THIRD YEAR ANNUAL REPORT

INTERSTATE POLLUTION CONTROL/ROTO-ROOTER SUPERFUND SITE Winnebago County Rockford, Illinois

Prepared for:

Interstate Pollution Control/Roto-Rooter Superfund Site Remedial Design/Remedial Action Steering Committee

Prepared by:

Environmental Information Logistics, LLC 446 S. Hawthorne Avenue Elmhurst, IL 60126

TABLE OF CONTENTS

1.0 INTRODU	<u>CTION</u> 1
1.1 SITE DES	SCRIPTION AND BACKGROUND
	Description1
	stituents of Concern (COCs)2
1.1.3 Exte	nt of Groundwater Impacts3
	ediation5
	<u>CAL ANALYSIS PLAN</u>
1.3 THIRD Y	EAR ANNUAL REPORT OVERVIEW
2.0 EVALUAT	FION OF SITE GROUNDWATER QUALITY8
2.1 SITE GRO	DUNDWATER MONITORING NETWORK8
	YELLS
2.3 Results	OF ONGOING NATURAL ATTENUATION GROUNDWATER MONITORING8
	radient Site Groundwater Quality9
2.3.2 Dow	ngradient Site Groundwater Quality10
2.3.3 Dow	ngradient River Well Groundwater Quality10
3.0 ALTERNA	ATIVE SOURCE DEMONSTRATION FOR COCS DETECTED IN
SITE MO	NITORING WELLS MW1 AND MW411
3.1 Sources	OF NATURALLY OCCURRING DISSOLVED METHANE
3.2 Off-Siti	SOURCES OF DISSOLVED METHANE
	Y AND CONCLUSIONS14
4.0 SUMMAN	TAND CONCLUSIONS17
	List of Attachments
Attachment 1	Site Location and Detail Maps
Attachment 2	Figure Showing the Locations of the Long-Term Natural Attenuation
	Monitoring Wells
Attachment 3	Laboratory Data Reports
Attachment 4	Data Summary Table
Attachment 5	COC Concentration Time Trends
Attachment 6	Data Validation Summaries
Attachment 7	Total VOC Load Concentration Time Trends
Attachment 8	Total VOC Load Trends (1,1,1-TCA plus TCE only)

1.0 INTRODUCTION

This Third Year Annual Report ("report") was prepared by Environmental Information Logistics, LLC (EIL) on behalf of the Interstate Pollution Control/Roto-Rooter ("IPC") Superfund Site Remedial Design/Remedial Action Steering Committee. This report discusses the results of long-term natural attenuation monitoring through the second quarter (June) 2010 sampling event, and satisfies the requirements of the IEPA-approved Groundwater Monitoring Work Plan ("GWMP"), dated March 1, 2006, and IEPA-approved First Year Annual Report/Technical Memorandum ("Tech Memo"), dated August 28, 2008, and the Consent Decree (with Appendix B – Statement of Work (SOW)) with the State of Illinois, dated March 1, 2006.

Section 6.0 of the IEPA-approved GWMP states the following:

"Annual reports will be prepared and submitted to the IEPA within 45 days of completing each second semi-annual groundwater sampling event (except in years 1, 5, 10, 15, etc., as discussed above and below). Each of the annual reports will include a summary of groundwater data collected during the past year and will include an evaluation, based on the IEPA-approved statistical methodology, of the source of any statistically significant changes to groundwater quality. Where appropriate, the annual report may also recommend changes to the statistical methodology for future monitoring events."

This report includes a summary of groundwater quality collected to date during natural attenuation monitoring and a comparison of the results to calculated background groundwater quality standards. This report also includes an alternative source demonstration (ASD) to address the presence of two COCs in downgradient monitoring well MW4 and one COC in downgradient monitoring well MW1.

1.1 Site Description and Background

1.1.1 Site Description

The Interstate Pollution Control Inc. (IPC) site ("the site") is located in an industrial area in the south central part of Rockford, Winnebago County, Illinois north west of Magnolia Peoples Avenue, as shown on the figure included in Attachment 1. The small (approximately 2.8 acre), irregularly-shaped site measures approximately 850 feet long along the north boundary line and 270 feet along the east boundary line.

During IPC's operation of the site it contained, at various times, at least six underground storage tanks, one large above-ground storage tank, an unlined surface impoundment, a gas fired incinerator, and several structures. IPC's operation at the site included transporting and bulking of waste oils, solvents and cyanide waste for incineration, resale and/or off-site disposal. Also during IPC's operation of the site, support service was provided to two sister companies; a portable toilet business and a Roto-Rooter franchise. Prior to IPC's operations, the site was extensively quarried and backfilled with various materials including a large quantity of foundry

sand. Following filling of the quarry and immediately prior to IPC's operations, the site was the location of an auto salvage yard.

In 1991, private parties negotiated a Partial Consent Decree with the Illinois EPA and the Attorney General of the State of Illinois. The Partial Consent Decree required that the private parties ("Respondents") undertake a Remedial Investigation/Feasibility Study ("RI/FS") at the site. The RI Work Plan was completed in 1992, and the field investigations were conducted in 1993-1994. The final RI Report was submitted in 1997.

Significant removal actions have occurred at the IPC site on two different occasions. The incinerator was removed between 1976 and 1979. IPC conducted partial cleanup of the site in 1979 and 1980, in response to an Illinois Pollution Control Board Order. During this partial cleanup of the site, several bulk tankers containing wastes, approximately 180 yds³ of material from the surface impoundment, and approximately 120 yd³ of cyanide-contaminated soils were removed. Reportedly, 1,200 drums of contaminated materials were also removed from the site during this cleanup. The surface impoundment was backfilled and graded.

On August 6, 1991, the U.S. EPA issued a Unilateral Administrative Order ("UAO") to IPC and the Respondents to conduct additional removal activities at the site. Beginning in 1992, the Respondents to the UAO fenced the site, removed over 1,400 tons of solid and hazardous waste (including visibly stained soils), demolished and removed all above-ground and underground tanks and significant structures, installed a clay cover over the former impoundments, and substantially cleared the site.

These removal actions eliminated more than 2.9 million pounds of solid and hazardous waste. These materials constituted principal threats at the site and were removed, treated, destroyed or disposed of prior to the initiation of the RI/FS.

1.1.2 Constituents of Concern (COCs)

A total of 73 chemicals of potential concern ("COPCs") were identified originally in the RI based on previous detections in site soils and were selected for risk assessment. These included 11 volatile organic compounds ("VOCs"), 29 semi-volatile organic compounds ("SVOCs"), 14 pesticide/PCB compounds, 18 trace metals, and cyanide. In addition, a total of 33 chemicals previously detected in on-site groundwater were selected as COPCs. These included 11 VOCs, 10 SVOCs, one pesticide/PCB compound, 11 trace metals, and cyanide. A significantly reduced number of these COPCs were found to be risk drivers, as summarized in the "Risk Driving Chemicals of Potential Concern" table from Section V of the ROD.

Based on the previously discussed contaminant removal activities and the installation of the engineered barrier, and as stated in Section 2.4 of the SOW, "VOCs are the sole constituents of concern" with respect to long term natural attenuation groundwater monitoring at the site. Section 2.4 of the SOW specifies that "...groundwater will be sampled for TCL VOC's only." during long term natural attenuation monitoring. In addition, paragraph XII of the Record of Decision (ROD) states "If during each Five Year Review cycle spastically [sic] significant decreases in on-site and down gradient concentrations of trichloroethene and 1,1,1-

trichloroethane in shallow groundwater are not verified (which cannot be attributed to upgradient sources), the SVE design pilot test will be implemented."

Seven VOCs were detected in site monitoring wells during the background data collection period and as reported in the August 28, 2008 First Year Annual Report/Technical Memorandum. These are:

- 1,1,1-trichloroethane
- 1.1-dichloroethane
- 1,1-dichloroethene
- cis-1,2-dichloroethene
- tetrachloroethene
- trichloroethane
- vinyl chloride

However, only four VOCs were proposed originally as site-specific COCs for long-term groundwater quality evaluation. Three VOCs, 1,1-dichloroethane, vinyl chloride, and cis-1,2-dichloroethene, were specifically not proposed as COCs because they were generally detected at elevated concentrations in downgradient monitoring wells and because there was (is) strong evidence to suggest that the downgradient concentrations were (are) biased due to an off-site source (i.e., landfill gas from the adjacent Peoples Avenue Landfill). However, IEPA's approval of the August 28, 2008 First Year Annual Report/Technical Memorandum was conditional based on the inclusion of all seven VOCs as COCs. Therefore, all seven of the VOCs detected during background data collection and as listed above are evaluated herein as COCs.

1.1.3 Extent of Groundwater Impacts

Remedial investigation activities were conducted at the site to evaluate the nature and extent of contamination, and to assess environmental impacts. Detailed results are provided in the *Final Remedial Investigation Report, Interstate Pollution Control Inc. Site, Rockford, Illinois* (Golder Associates Inc., December 1997). In general, site groundwater was found to be impacted with numerous organic and inorganic constituents from a combination of past site activities and from a number of upgradient sources. Some of the upgradient sources are being addressed under various regulatory actions and it appears that some are not. In addition, landfill gas from the adjacent Peoples Avenue Landfill was detected on-site and identified as another possible source of VOCs in groundwater.

The site is located adjacent to the much larger Southeast Rockford Groundwater Contamination ("SER") site. The SER site began with the discovery of VOCs in groundwater within a residential area of nearly two square miles. The discovery prompted the USEPA to ultimately extend water mains and connect 526 residences to City water at a cost of approximately \$4 million. The SER site was then added to the National Priorities List ("NPL"). After further IEPA study, the SER site was expanded to a ten square mile study area ("SER Study Area") that incorporates almost 20 percent of the City and includes the IPC site. Studies have since indicated the widespread presence of chlorinated solvents in groundwater within this ten square mile area, in concentrations varying from less than 10 ppb to over 10,000 ppb.

The SER ROD defines the boundary of the SER Site by the 10 ppb chlorinated VOC plume that extended to approximately 1,200 feet southeast of the IPC site at its closest point (as of 1993). It is reasonable to expect that parts of this plume have expanded to the extent that it now affects groundwater beneath the IPC site.

As discussed in the 1999 site ROD, there are/were also a number of other known groundwater contaminant sources located near the IPC site. For example, the former Mattison Machine Works is located approximately 1,000 feet to the northeast (i.e., upgradient). Previous studies at Mattison Machine Works dating back to 1993 indicate that a plume containing PCE (up to 10,600 ug/L), TCE (up to 1,500 ug/L), and 1,1,1-TCA (up to 800 ug/L) is/was passing under that facility. These concentrations are much higher than are in groundwater at IPC. In addition, the Peoples Avenue Landfill, located immediately southeast of IPC, was previously identified as the likely source of groundwater contamination that contributed to the deterioration of groundwater quality in one of the City of Rockford's public supply wells (Municipal Well No. 14), ultimately resulting in the abandonment of the supply well in 1971, prior to operations at IPC. The Peoples Avenue Landfill is also a known source of landfill gas (including methane) migration that previously entered the basement of the former Quaker Oats pet food manufacturing plant, located just southwest of the IPC site. And, as reported previously, there is evidence to suggest that landfill gas has impacted site monitoring well MW-4.

While remedial actions associated with some of the known sources within the SER Study Area are presently on-going, the IEPA and U.S. EPA have not specifically addressed some of the known groundwater contamination sources near to and upgradient of the IPC site. As indicated in the RI report and in the ROD, some of these sources contain elevated concentrations of VOCs, some of which are/were higher than those measured on-site.

As noted in the ROD,

"One of the most notable outcomes of the groundwater portion of the [RI] investigation was verification that a plume of chlorinated volatile organic compounds, at substantially higher concentrations than occur on site is approaching the site from the north east. The plume is expected to reach the IPC site in 15 to 45 years."

This is significant because, given that the RI data collection activities were completed by 1994, the "plume" would have possibly reached the site as early as 2009, resulting in degradation of site groundwater quality that is completely unrelated to the performance of the selected remedy and which could be attributed mistakenly to the site. As such, the interpretation of the results of long term natural attenuation monitoring must take into account the potential for groundwater quality degradation due to off-site sources. This approach reduces the possibility of incorrectly concluding that the selected remedy is insufficient and that the remedy must be supplemented with soil vapor extraction.

In fact, and as discussed in the First Year Annual Report/Technical Memorandum and the Second Year Annual Report, an upgradient plume appears to have arrived at the site. While the source of the plume is unknown, it is likely that it is the same one previously reported under the Mattison Machine Works property, and it is possible that the SER Site plume has also expanded

to the extent that it now affects groundwater quality at the IPC site. Regardless of the source, it is reasonable to expect that the plume will continue to migrate through the site until such time that the upgradient sources are either removed or isolated, eventually affecting the three downgradient site monitoring wells, and ultimately the two river wells. As such, there will likely be further groundwater quality degradation in the site monitoring wells and possible new groundwater quality degradation in the river wells that is completely unrelated to the site and to the performance of the selected remedy.

Therefore, the statistical analysis plan was developed such that it allowed for recalculation of background standards (as appropriate) and/or adjustment of the evaluation protocol in order to reduce the likelihood of false positive statistical failure related to the off-site sources. Since there is evidence to suggest that the upgradient plume has arrived, and in accordance with the IEPA-approved GWMP and the IEPA-approved First Year Annual Report/Technical Memorandum, revised calculated background standards and statistical evaluation criteria were included in the Second Year Annual Report for selected COCs. This report, therefore, includes statistical evaluations that are consistent with those originally provided in the IEPA-approved GWMP and First Year Annual Report/Technical Memorandum and as modified by the Second Year Annual Report.

1.1.4 Remediation

The IEPA selected the remedial alternative with the concurrence of the U.S. EPA and after a detailed analysis of the alternatives included in the approved Feasibility Study (FS). The selected remedial alternative addresses the principal threats by installation of an impermeable barrier over the site, placing institutional controls on future site uses, reinforcing existing city and state groundwater use restrictions, and addressing groundwater contamination resulting from the site by implementing a monitored natural attenuation program. The selected remedy also includes a soil vapor extraction component as a contingency should the IEPA conclude during the five year review periods that site and downgradient groundwater quality has not improved due to continued site releases which cannot be attributed to upgradient sources. However, the selected remedy does not take into consideration the potential affect of the numerous, known offsite impacts which now appear to be impacting site groundwater quality.

An SVE system was not included as an active part of the current remedy for a number of reasons, as discussed in the FS. First, the incremental improvement in reducing VOC migration to groundwater, and therefore in reducing risk to health and the environment, was deemed minimal following the construction of the surface barrier. Second, the treatment efficiency for an SVE system was not quantifiable given the relatively high VOC load currently on site and the on-going impacts from off-site sources. Finally, there were concerns that an SVE system would induce landfill gas migration from the Peoples Avenue Landfill that would adversely impact the operation of such a system. There were also concerns, discussed with the IEPA during the FS evaluation process, that such landfill gas migration would create a site health and safety issue related to possible explosive hazards.

Nothing has changed at the site that would alter the first criterion, above. The engineered barrier was installed and is being maintained, effectively eliminating both surface water infiltration and potential exposure to any remaining site contaminants. However, the predicted arrival of the

uncontrolled upgradient plume(s) is (are) degrading, and will likely continue to degrade, for an unknown period of time, groundwater quality beneath the engineered barrier. Groundwater quality degradation from the upgradient plume(s) can be expected to continue until the upgradient source(s) are either removed or are isolated, and there is presently no indication that there are either ongoing or planned efforts to address the uncontrolled sources. This has resulted in a situation in which the IPC Steering Committee's ability to incrementally evaluate IPC's contribution to groundwater degradation is now extremely difficult, if not impossible.

Regarding the second criterion, if there was formerly an inability to quantify the efficacy of an SVE system given the then-current contaminant loads, then the arrival of the off-site plume(s), which could effectively increase on-site contaminant load, would increase the inability to quantify the efficacy of an SVE system. For example, if an SVE system were installed and operated concurrent with the arrival of the upgradient plume, then it would be likely that the degrading effect of the plume would far outweigh the remedial effect of the SVE system.

Regarding the third criterion, the potential for an SVE system to induce off-site landfill gas migration appears to be quite real given the recent documentation showing that groundwater in MW4, located adjacent to the People's Avenue Landfill, already contains dissolved methane which is likely the result of landfill gas migration on to the site. It is reasonable to expect that if landfill gas can migrate to the site under current, passive conditions (i.e., with no SVE system), then there is a greatly increased likelihood of additional landfill gas migration under active conditions (i.e., with an active SVE system) with a corresponding potential increase in groundwater quality degradation and health and safety related issues associated with landfill gas explosive hazards.

Finally, it must be emphasized that the SVE system would be designed to reduce contaminant load in site soils and thus reduce the potential for contaminant migration from site soil to site groundwater, premised on the assumption that current groundwater impacts are generally a function of the current soil contaminant load. Given that the upgradient groundwater plume(s), which appears to have already reached the site, contains higher concentrations of some COCs than are currently in site groundwater, it is fair to expect that the upgradient source will be significantly larger and/or more heavily contaminated than what presently remains in site soil. Under these conditions the incremental improvement to site groundwater quality via the implementation of an SVE system will be immeasurable or nonexistent.

On the basis of these arguments, the IPC Steering Committee recommended previously (*River Well Statistics Technical Memorandum, June 1, 2010*), and continues to recommend, that the SVE system be excluded from further consideration as a contingent remedy.

The engineered barrier was completed in 2006. The groundwater monitoring natural attenuation program began in September 2007 and background data collection at the six site monitoring wells was completed in June 2008. The slight delay between the completion of the engineered barrier and the initiation of natural attenuation monitoring was based on the desire to complete the installation of the two river wells and to collect background data from them simultaneously with the six site monitoring wells. Unfortunately, the installation of the two river wells was delayed more than expected due to access issues beyond the control of the steering committee.

Therefore, after a period of time the IEPA requested that background data collection begin at the six site wells even though the two river wells had not been installed.

The two river wells were installed in March 2009 and background data collection was completed following the fourth quarter 2009 sampling event. The results of the river well background data collection and the calculated COC standards were provided to the IEPA on June 1, 2010. This report includes data collected through June 2010 (i.e., the fourth semiannual event at the site wells and the first semiannual event at the river wells).

1.2 Statistical Analysis Plan

The statistical evaluation plan (STEP) was included in the IEPA-approved First Year Annual Report/Technical Memorandum and was specifically designed to allow for subsequent modification to account for the anticipated influences from off-site contaminant sources and to reduce the possibility that those influences could result in statistical failures. Due the apparent arrival of the off-site plume and the continued landfill-gas influences in MW4, the STEP was modified in the Second Year Annual Report as follows:

- Intrawell background standards were recalculated for 1,1-DCA in MW3 and for PCE and TCE in MW6 to account for the arrival of the off-site (upgradient) contaminant plume.
- Interwell background standards were recalculated for 1,1-DCA, PCE, and TCE in the three upgradient wells also to account for the arrival of the off-site (upgradient) contaminant plume.
- A statistical failure at MW4 would hereafter be based on a combined failure of an interwell *and* an intrawell background standard to reduce the possibility of a statistical failure due to landfill gas influences from the Peoples Avenue Landfill.

The evaluations included in this Third Year Annual Report are based on the modified STEP.

1.3 Third Year Annual Report Overview

The purpose of this report is to provide the results of long-term natural attenuation monitoring to date at the site, a comparison of the data to previously calculated background groundwater quality standards, and an evaluation of whether the site is currently impacting groundwater. This report is organized as follows:

- Section 2.0 provides on evaluation of groundwater quality based on a comparison of COC detections with calculated COC background standards.
- Section 3.0 includes an alternative source demonstration (ASD) for various COCs detected in monitoring wells MW1 and MW4.
- Section 4.0 includes a summary and conclusions.

2.0 EVALUATION OF SITE GROUNDWATER QUALITY

Background groundwater quality data collection was performed at the six site monitoring wells in accordance with the ROD, SOW, and IEPA-approved GWMP. A site-specific list of seven COCs was selected and background standards were calculated based on the first four quarters of background data collection. The COC list and calculated background standards were approved by IEPA. As discussed in detail in the Second Year Annual Report and summarized herein, selected background standards were recalculated in the upgradient wells to incorporate upgradient plume-affected data, and minor modifications were made to the statistical evaluation protocol, to reduce the possibility of future statistical failures based on influences from the upgradient plume.

Background data collection was completed in the two river wells following the fourth quarter 2009 sampling event. Specific COC background standards were calculated for both river wells and were submitted to IEPA on June 1, 2010 (*River Well Statistics Technical Memorandum*) and are the basis for the statistical comparisons included herein.

2.1 Site Groundwater Monitoring Network

The site groundwater monitoring network consists of six monitoring wells, designated MW1, MW2, MW3, MW4, MW5, and MW6. The locations of these wells are shown on one of the figures included in Attachment 2. Each well is screened at a depth of approximately 60 feet within the shallow sand and gravel aquifer. Both regional and local groundwater flow in this aquifer is generally from northeast to southwest, towards the Rock River. Based on this groundwater flow direction, monitoring wells MW3, MW5, and MW6 are hydraulically upgradient of the site. The remaining three monitoring wells, MW1, MW2, and MW4 are hydraulically downgradient of the site.

2.2 River Wells

Two river wells were installed in March 2009, as required, at the locations shown on one of the figures included in Attachment 2. The river wells are designated MW8 and MW9, and both were installed to a depth of approximately 19 feet. (Note: The designation MW7 is reserved for the "blind" duplicate sample submitted to the laboratory during each monitoring event). Based on current groundwater flow conditions, both river wells are hydraulically downgradient of the site.

2.3 Results of Ongoing Natural Attenuation Groundwater Monitoring

Semiannual groundwater sampling for each of the seven COCs was performed in each of the site monitoring wells during this reporting period. Quarterly monitoring was performed at the two river wells through the background data collection period (ending in the fourth quarter 2009) and then continued on a semiannual basis. The laboratory data reports are included as Attachment 3. A summary of the analytical results for each COC in each monitoring well is included in the table in Attachment 4. The table in Attachment 4 also includes the calculated background standards. Concentration time trends for each COC in each well are included as Attachment 5.

Each laboratory data report was reviewed for completeness and accuracy, in accordance with the IEPA-approved quality assurance project plan (QAPP). The reviews included laboratory QA/QC documentation and the results of field and quality control blanks. Data validation summaries for each laboratory sampling report are included in Attachment 6.

A discussion of site groundwater quality is included below.

2.3.1 Upgradient Site Groundwater Quality

Upgradient groundwater quality appears to be relatively stable with respect to total VOC load during the past year. However, the concentrations of tetrachloroethene (PCE) appear to have increased in both upgradient wells MW3 and MW6, and the concentration of PCE in MW3 slightly exceeded its calculated intrawell standard during the most recent sampling event. This is consistent with the apparent arrival of the off-site, upgradient VOC plume, as reported previously. As stated in the ROD,

"One of the most notable outcomes of the groundwater portion of the [RI] investigation was verification that a plume of chlorinated volatile organic compounds, at substantially higher concentrations than occur on site is approaching the site from the north east. The plume is expected to reach the IPC site in 15 to 45 years."

Given that the RI data collection activities were completed by 1994, arrival of the plume by 2009 is entirely consistent with the predictions included in the RI Report. This appears to be further supported by the total (i.e., cumulative) VOC load trends included as Attachment 7. As shown in the total VOC load time trends, the total (i.e., cumulative) VOC load is consistently higher in the three upgradient wells compared to the three downgradient wells, and the difference between the two has increased from 183 ug/L when natural attenuation monitoring began in September 2007 to 294 ug/L in the most recent sampling event, an increase of over 60 percent. Clearly, therefore, upgradient groundwater quality is worse than is downgradient groundwater quality based on total VOC load.

The IEPA requested in their August 26, 2009 Second Year Annual Report comment letter that a graph showing the sum of trichloroethene (TCE) and 1,1,1-trichloroethane (1,1,1-TCA) in the upgradient site wells compared with the sum in the downgradient site wells be included in the annual reports. Such a time trend is included in Attachment 8. As shown on the graph, the total concentrations of these two compounds have been consistently higher in the upgradient wells. The sum of TCE and 1,1,1-TCA in the upgradient wells has increased since natural attenuation monitoring began from 530 ug/L to 547 ug/L. During the same time period, however, and in spite of the arrival of the off-site plume, the sum of TCE and 1,1,1-TCA in the downgradient wells has decreased from 324 ug/L to 269 ug/L, a decrease of nearly 17 percent. During the same time period the difference between the cumulative upgradient sums and the cumulative downgradient sums has increased from approximately 206 ug/L to 278 ug/L, an increase of nearly 35 percent. Based on this comparison alone, there is evidence that groundwater quality has improved downgradient of the site compared to upgradient of the site.

Strictly speaking and consistent with the IEPA-approved statistical analysis plan, an intrawell exceedance in an upgradient well is evidence of groundwater degradation due to an off-site source and is, therefore, grounds for recalculating the intrawell background standard. However, given that there is presently only one upgradient intrawell exceedance (and that by only a small amount) and the relatively stable total VOC load, we do not think that any further upgradient intrawell background standard revisions are appropriate at this time.

2.3.2 Downgradient Site Groundwater Quality

Downgradient groundwater quality in the three site wells continues to be generally stable or improving. Total VOC load in the downgradient wells, depicted in the time trends included as Attachment 7, is presently at 830 ug/L compared to 990 ug/L when natural attenuation monitoring began, a decrease of over 16 percent. However, the current data set includes only eight data points and is, therefore, relatively small.

There were two interwell exceedances in MW4; one for 1,1-DCA and one for vinyl chloride and consistent with that reported last year. However, neither concentration exceeded its respective intrawell background standard and, therefore, does not represent a statistical failure. The presence of both these compounds at relatively high concentrations (compared to the other site monitoring wells) was reported previously in the First Year Annual Report/Technical Memorandum and was attributed to landfill gas from a known off-site/side gradient and uncontained source, the Peoples Avenue Landfill. This was the primary motivation behind our initial request to exclude these two compounds from long-term natural attenuation monitoring, which was denied by IEPA.

In addition, there was an interwell exceedance in MW1 for 1,1-DCA.

This report includes an alternative source demonstration (ASD) for these exceedances in Section 3.0.

2.3.3 Downgradient River Well Groundwater Quality

There were no VOCs detected in river well MW9, consistent with that reported last year. Only two VOCs, trichloroethene and cis 1,2-DCE, were detected in MW8 during the most recent monitoring event. However, the concentrations were generally much less than in most of the site wells, more than an order of magnitude less than in half the site wells. Therefore, there is no indication of site-related groundwater impacts in the river wells.

3.0 ALTERNATIVE SOURCE DEMONSTRATION FOR COCS DETECTED IN SITE MONITORING WELLS MW1 AND MW4

Groundwater samples collected during the quarterly background monitoring were also analyzed for dissolved methane, specifically during the third quarter 2008 monitoring event, and as reported previously in the First Year Annual Report/Technical Memorandum. Dissolved methane, a major component of landfill gas, was detected in five of the six site monitoring wells as summarized in the table below.

Resul	lts of	'Disso	lved	Met	hane	Anal	lyses

Sample	Concentration of Dissolved	Reporting Limit
Location	Methane (ug/L)	(ug/L)
MW1	2.1	0.19
MW2	2.1	0.19
MW3	4.1	0.19
MW4	42	0.19
MW5	ND	0.19
MW6	1.2	0.19
MW7*	1.3	0.19
Field blank	ND	0.19
Trip blank	ND	0.19

ND = not detected at the reporting limit

3.1 Sources of Naturally Occurring Dissolved Methane

The relatively low dissolved methane concentrations in four of the wells may be indicative of methanogenesis, a naturally occurring form of anaerobic respiration associated with certain common microbes in the presence of organic material. Subsurface soil at the site was reported in the RI report to have contained relatively high concentrations of total organic carbon (TOC). Given that the recently constructed site cap has likely created subsurface anaerobic conditions, the presence of an abundant "food" source (i.e., the high TOC), it is not unreasonable to assume that methanogenesis is occurring. Therefore, the site-wide presence of relatively low concentrations of dissolved methane could indicate that natural attenuation is active.

3.2 Off-Site Sources of Dissolved Methane

The Peoples Avenue Landfill is located adjacent to and south/southeast of the site, and reportedly received a combination of residential, commercial, and industrial wastes. The combustible gas methane was previously detected in the basement of the adjacent pet food plant, and it was attributed to the Peoples Avenue Landfill (USEPA, 1976; RI Report, 1994). Two isolated areas with elevated combustible gas readings (i.e., methane) were also identified between the site and the Peoples Avenue Landfill during RI activities conducted in the early

^{* &}quot;blind" duplicate sample collected from MW6

1990's. Soil gas collected from these areas also contained slightly elevated concentrations of VOCs. The conclusion contained in the RI was:

"The USEPA and RI soil gas results indicate, therefore, that the Peoples Avenue Landfill may be an active source of combustible gases and, possibly, organic vapors in the Site area."

Landfill gas migration is a commonly known transport mechanism for numerous VOCs including tetrachloroethene, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, and others (Vogel et al., 1987). As such, landfill gas migration has been implicated to be a principal source of many VOCs, including those currently detected in site groundwater, in groundwater near landfills.

While dissolved methane was discovered in most of the site monitoring wells, the concentrations were relatively low and, therefore, are likely at least partially the result of on-site methanogenesis.

MW4

The concentrations of 1,1-DCA and vinyl chloride continue to exceed their respective interwell background standards in MW4. However, the concentrations do not exceed their respective intrawell background standards. As such, the concentrations do not constitute a statistical failure and, strictly speaking, are not subject to an Alternative Source Demonstration. However, the following information is provided for informational purposes.

Given that MW4 is located adjacent to the Peoples Avenue Landfill and it contains, by far, the highest concentration of dissolved methane compared to the other wells, it is highly likely that landfill gas from the Peoples Avenue Landfill is the source for much or all of the dissolved methane in MW4. This is consistent with the previous reports documented herein. And given that landfill gas is a common carrier of numerous VOCs, including 1,1-DCA and vinyl chloride, it is fair to conclude that the elevated concentrations of 1,1-DCA and vinyl chloride in MW4 are also the result of the presence of landfill gas.

It is important to note that neither 1,1-DCA nor vinyl chloride are exhibiting increasing trends in MW4, and concentrations are well within the range of those detected since the beginning of natural attenuation monitoring. More importantly, the total VOC load in MW4 has decreased from a high of 389 ug/L in December 2007 to 284 ug/L during the most recent sampling event, a drop of nearly 27 percent. In summary, therefore, there is no indication that groundwater conditions on MW4 are deteriorating due to the site and, in fact, it appears that overall groundwater conditions have improved.

MWI

The concentration of 1,1-DCA also exceeded its respective interwell background standard in MW1 during the last sampling event. 1,1-DCA is a breakdown product of 1,1,1-TCA. The concentration of 1,1,1-TCA has decreased from a high of 13 ug/L to non-detect (reporting limit of 5 ug/L). As such, the increasing concentration of 1,1-DCA may simply be the result of the breakdown of 1,1,1-TCA. This explanation is supported by the fact that the total VOC load in

MW1 has decreased from a high of approximately 336 ug/L in June 2008 to 203 ug/L during the most recent sampling event, a decrease of nearly 40 percent.

It is also possible that landfill gas has also affected groundwater conditions in this well and have thus biased the concentration of 1,1-DCA, as indicated by the presence of dissolved methane in groundwater at this well. Other known (or unknown) upgradient sources may also be contributing sources. While MW1 is technically a downgradient well, it is located such that it could easily be considered sidegradient. Based on the location of MW1, it is easy to see that a plume migrating from the northeast or from the adjacent quarry could, potentially, impact MW1 while not affecting the upgradient wells.

In any case, overall groundwater conditions have clearly improved in MW1 with respect to total VOC load and there is no indication of site-related degradation in groundwater quality at this well.

4.0 SUMMARY AND CONCLUSIONS

The results of long-term natural attenuation monitoring to date indicate that total (i.e., cumulative) VOC load in the downgradient wells have been at their lowest concentrations during the past year, and there does not appear to be any site-related groundwater degradation in either the site monitoring wells or in the river wells. The affects from the arrival of the upgradient plume appear to have stabilized for the moment, and the revised statistical standards and evaluation protocol appear to have satisfactorily addressed the impacts associated with the off-site plume and no further statistical evaluation revisions are currently recommended. However, it is reasonable to assume that the off-site plume will eventually migrate through the site and impact the downgradient monitoring wells, possibly resulting in new "false-positive" statistical failures that will need to be addressed either by revising calculated background standards or by changing the statistical evaluation protocol (or both).

While on-site methanogenesis is likely occurring, indicating that natural attenuation is active, the relatively high (i.e., anomalous) concentrations of dissolved methane in downgradient well MW4 appear to be the result of landfill gas migration from the Peoples Avenue Landfill. It is likely that the associated relatively high concentrations of 1,1-DCA and vinyl chloride in MW4 are the result of the presence of landfill gas and are not site-related. It is also likely that the presence of these compounds in other site wells are biased high due to the presence of landfill gas.

We look forward to the IEPA's approval of this report. If you have any questions, please do not hesitate to call me at 630 834-8847.

Sincerely,

ENVIRONMENTAL INFORMATION LOGISTICS, LLC

A. Michael Hirt, P.G. Senior Geologist

References

Golder Associates, Inc., 1994, Final Remedial Investigation Report, Interstate Pollution Control Inc. Site, Rockford, Illinois.

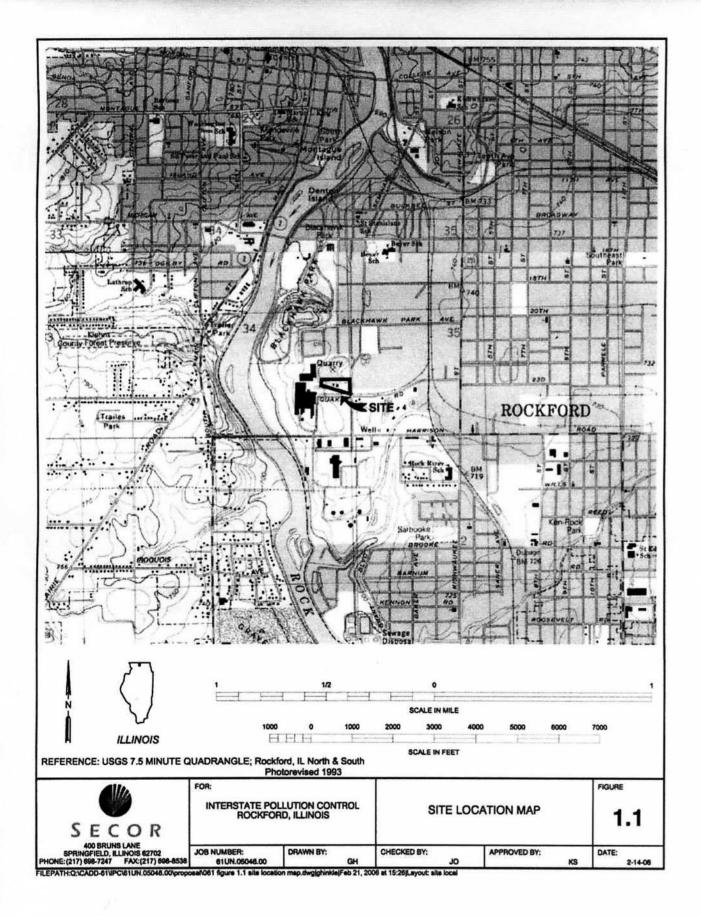
USEPA, 1976, Leachate Damage Assessment: Case Study of the Peoples Avenue Landfill Solid Waste Disposal Site in Rockford, Illinois, EPA/530/SW-517.

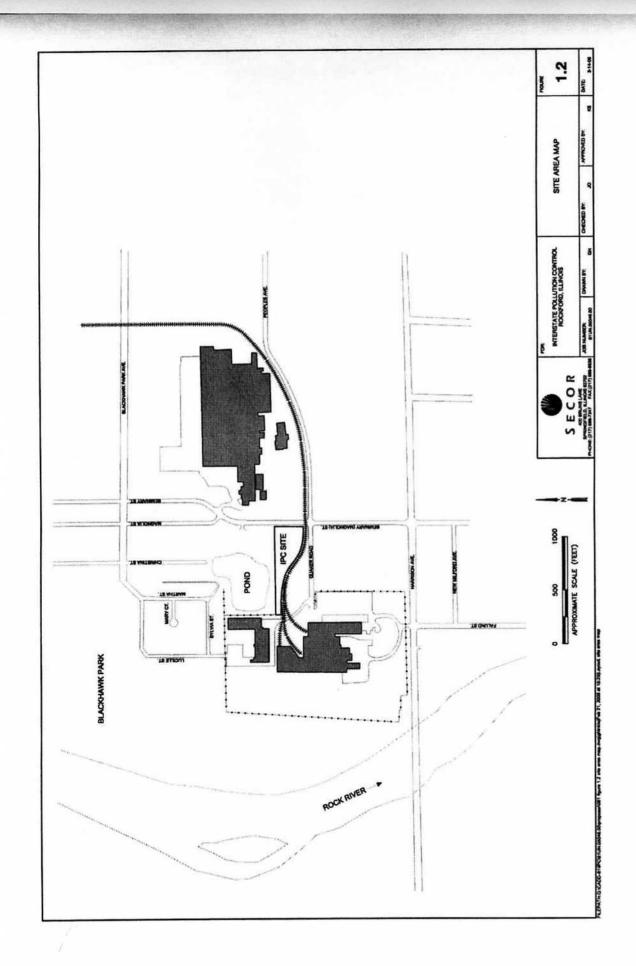
Vogel et al., 1987, *Transformation of Halogenated Aliphatic Compounds*, Environmental Science Technology, vol. 21, pp. 722-736.

Site Location and Detail Maps

Figure Showing the Locations of the Long-Term Natural Attenuation Monitoring Wells

Laboratory Data Reports


Data Summary Table

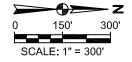

COC Concentration Time Trends

Data Validation Summaries

Total VOC Load Concentration Time Trends

Total VOC Load Trends (1,1,1-TCA plus TCE only)

LEGEND


PROXIMATE SITE BOUNDARY

LONG-TERM NATURAL ATTENUATION MONITORING WELL LOCATIONS

NOTES

1. AERIAL PHOTO PROVIDED BY WINNEBAGO COUNTY GEOGRAPHIC INFORMATION SYSTEM (WINGIS).

EIL ENVIRONMENTAL INFORMATION LOGISTICS, LLC PREPARED FOR

INTERSTATE POLLUTION CONTROL

FIGURE 1 LONG-TERM NATURAL ATTENUATION MONITORING WELL LOCATIONS

INTERSTATE POLLUTION CONTROL ROCKFORD, ILLINOIS

ROCKFORD, ILLINOIS 070309

JULY 2009

ANALYTICAL REPORT

Job Number: 500-23216-1

Job Description: Interstate Pollution Control Site

For:

Environmental Information Logistics (EIL 975 Burton Street
Unit 10
Beloit, WI 53511

Attention: Ms. Mary Pearson

Rill KhyM

Approved for release. Richard C Wright Project Manager II 12/30/2009 10:29 AM

Richard C Wright
Project Manager II
richard.wright@testamericainc.com
12/30/2009

These test results meet all the requirements of NELAC for accredited parameters.

The Lab Certification ID# is 100201.

All questions regarding this test report should be directed to the TestAmerica Project Manager whose signature appears on this report. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable.

Job Narrative 500-23216-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

Method(s) 8260B: The %RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for preparation batch 78136 exceeded control limits for the following analytes: Acetone.

Method(s) 8260B: The laboratory control sample (LCS) for preparation batch 78199 exceeded control limits for the following analytes: Carbon tetrachloride. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method(s) 8260B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch78136 were outside control limits for 1,2-Dichloroethane and Trichloroethene. The associated laboratory control sample (LCS) recovery met acceptance criteria.

Method(s) 8260B: Due to the high concentration of cis-1,2-Dichlororethene, the matrix spike / matrix spike duplicate (MS/MSD) for batch 78136 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria.

No other analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: Environmental Information Logistics (EIL

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method
500-23216-1	MW1				
Vinyl chloride 1,1-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroether 1,1,1-Trichloroethar Trichloroethene		10 12 14 160 11 52	2.0 5.0 5.0 25 5.0 5.0	ug/L ug/L ug/L ug/L ug/L ug/L	8260B 8260B 8260B 8260B 8260B 8260B
500-23216-2	MW2				
1,1-Dichloroethene cis-1,2-Dichloroether 1,1,1-Trichloroethene Tetrachloroethene		22 92 25 210 34	5.0 5.0 5.0 25 5.0	ug/L ug/L ug/L ug/L ug/L	8260B 8260B 8260B 8260B 8260B
500-23216-3	MW3				
1,1-Dichloroethene cis-1,2-Dichloroether 1,1,1-Trichloroethar Trichloroethene Tetrachloroethene		21 58 27 240 38	5.0 5.0 5.0 25 5.0	ug/L ug/L ug/L ug/L ug/L	8260B 8260B 8260B 8260B 8260B
500-23216-4	MW4				
Vinyl chloride 1,1-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroether 1,1,1-Trichloroethan		67 9.8 22 160 18	2.0 5.0 5.0 25 5.0	ug/L ug/L ug/L ug/L ug/L	8260B 8260B 8260B 8260B 8260B
500-23216-5	MW5				
Vinyl chloride 1,1-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethe 1,1,1-Trichloroethan Trichloroethene Tetrachloroethene		7.2 26 6.6 140 39 230 42	2.0 5.0 5.0 25 5.0 25 5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	8260B 8260B 8260B 8260B 8260B 8260B 8260B

EXECUTIVE SUMMARY - Detections

Client: Environmental Information Logistics (EIL

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method
500-23216-6	MW6				
Vinyl chloride		18	2.0	ug/L	8260B
1,1-Dichloroethene		24	5.0	ug/L	8260B
1,1-Dichloroethane		6.7	5.0	ug/L	8260B
cis-1,2-Dichloroethe	ene	190	25	ug/L	8260B
1,1,1-Trichloroethar	ne	37	5.0	ug/L	8260B
Trichloroethene		150	25	ug/L	8260B
500-23216-7	MW7				
Vinyl chloride		2.1	2.0	ug/L	8260B
1,1-Dichloroethene		23	5.0	ug/L	8260B
cis-1,2-Dichloroethe	ene	95	5.0	ug/L	8260B
1,1,1-Trichloroethar	ne	27	5.0	ug/L	8260B
Trichloroethene		200	25	ug/L	8260B
Tetrachloroethene		35	5.0	ug/L	8260B
500-23216-8	MW8				
1,1-Dichloroethene		7.1	5.0	ug/L	8260B
1,1-Dichloroethane		12	5.0	ug/L	8260B
cis-1,2-Dichloroethe	ene	29	5.0	ug/L	8260B
1,1,1-Trichloroethar	ne	11	5.0	ug/L	8260B
Trichloroethene		75	5.0	ug/L	8260B

METHOD SUMMARY

Client: Environmental Information Logistics (EIL

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds (GC/MS)	TAL CHI	SW846 8260B	
Purge and Trap	TAL CHI		SW846 5030B

Lab References:

TAL CHI = TestAmerica Chicago

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: Environmental Information Logistics (EIL Job Number: 500-23216-1

Method	Analyst	Analyst ID
SW846 8260B	Alikpala, Elaine	EA
SW846 8260B	Drabek, Dave J	DJD

SAMPLE SUMMARY

Client: Environmental Information Logistics (EIL Job Number: 500-23216-1

Lab Sample ID	Date/Time e ID Client Sample ID Client Matrix Sampled		Date/Time Received		
500-23216-1	MW1	Water	12/17/2009 1136	12/19/2009 0900	
500-23216-1MS	MW1	Water	12/17/2009 1136	12/19/2009 0900	
500-23216-1MSD	MW1	Water	12/17/2009 1136	12/19/2009 0900	
500-23216-2	MW2	Water	12/17/2009 1242	12/19/2009 0900	
500-23216-3	MW3	Water	12/17/2009 1312	12/19/2009 0900	
500-23216-4	MW4	Water	12/17/2009 1346	12/19/2009 0900	
500-23216-5	MW5	Water	12/17/2009 1416	12/19/2009 0900	
500-23216-6	MW6	Water	12/17/2009 1447	12/19/2009 0900	
500-23216-7	MW7	Water	12/17/2009 1200	12/19/2009 0900	
500-23216-8	MW8	Water	12/18/2009 1036	12/19/2009 0900	
500-23216-9	MW9	Water	12/18/2009 1107	12/19/2009 0900	
500-23216-10	F.B.	Water	12/17/2009 1455	12/19/2009 0900	

SAMPLE RESULTS

Ms. Mary Pearson Environmental Information Logistics (EIL 975 Burton Street Unit 10 Beloit, WI 53511

 Client Sample ID:
 MW1
 Date Sampled:
 12/17/2009
 1136

 Lab Sample ID:
 500-23216-1
 Date Received:
 12/19/2009
 0900

Client Matrix: Water

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Method: 8260B		Date Analyzed: 12/24/2009 1425			
Prep Method: 5030B			repared:	12/24/2009 1425	
Benzene	<5.0	ug/L	0.15	5.0	1.0
Chloromethane	<5.0	ug/L	0.14	5.0	1.0
Vinyl chloride	10	ug/L	0.15	2.0	1.0
Bromomethane	<5.0	ug/L	0.45	5.0	1.0
Chloroethane	<5.0	ug/L	0.36	5.0	1.0
1,1-Dichloroethene	12	ug/L	0.23	5.0	1.0
Carbon disulfide	<5.0	ug/L	0.66	5.0	1.0
Acetone	<20 *	ug/L	2.1	20	1.0
Methylene Chloride	<10	ug/L	0.52	10	1.0
trans-1,2-Dichloroethene	<5.0	ug/L	0.18	5.0	1.0
1,1-Dichloroethane	14	ug/L	0.12	5.0	1.0
Methyl Ethyl Ketone	<20	ug/L	2.8	20	1.0
Chloroform	<5.0	ug/L	0.15	5.0	1.0
1,1,1-Trichloroethane	11	ug/L	0.14	5.0	1.0
Carbon tetrachloride	<5.0	ug/L	0.32	5.0	1.0
1,2-Dichloroethane	<5.0	ug/L	0.14	5.0	1.0
Trichloroethene	52	ug/L	0.16	5.0	1.0
1,2-Dichloropropane	<5.0	ug/L	0.19	5.0	1.0
Bromodichloromethane	<5.0	ug/L	0.13	5.0	1.0
cis-1,3-Dichloropropene	<5.0	ug/L	0.16	5.0	1.0
methyl isobutyl ketone	<20	ug/L	0.77	20	1.0
Toluene	<5.0	ug/L	0.17	5.0	1.0
trans-1,3-Dichloropropene	<5.0	ug/L	0.21	5.0	1.0
1,1,2-Trichloroethane	<5.0	ug/L	0.22	5.0	1.0
Tetrachloroethene	<5.0	ug/L	0.20	5.0	1.0
2-Hexanone	<20	ug/L	0.77	20	1.0
Dibromochloromethane	<5.0	ug/L	0.17	5.0	1.0
Chlorobenzene	<5.0	ug/L	0.17	5.0	1.0
Ethylbenzene	<5.0	ug/L	0.22	5.0	1.0
Styrene	<5.0	ug/L	0.17	5.0	1.0
Bromoform	<5.0	ug/L	0.30	5.0	1.0
1,1,2,2-Tetrachloroethane	<5.0	ug/L	0.27	5.0	1.0
Xylenes, Total	<5.0	ug/L	0.42	5.0	1.0
Surrogate	rrogate		Acceptance Limits		
1,2-Dichloroethane-d4 (Surr)	122	%		72 - 135	
Toluene-d8 (Surr)	101	%		80 - 120	
4-Bromofluorobenzene (Surr)	95	%			
Dibromofluoromethane	113	%		79 - 133	

Client Sample ID: MW1 Lab Sample ID: 500-23216-1 Date Sampled: 12/17/2009 1136 Date Received: 12/19/2009 0900

Job Number: 500-23216-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution	
Method: 8260B Run Type: DL		Date A	nalyzed: 12/2	4/2009 1447		
Prep Method: 5030B		Date P	repared: 12/2	4/2009 1447		
cis-1,2-Dichloroethene	160	ug/L	0.75	25	5.0	
Surrogate		Acceptance Limits				
1,2-Dichloroethane-d4 (Surr)	123	%		72 - 135		
Toluene-d8 (Surr)	101	% 80 - 120				
4-Bromofluorobenzene (Surr)	92	%		77 - 120		
Dibromofluoromethane	114	%		79 - 133		

 Client Sample ID:
 MW2
 Date Sampled:
 12/17/2009
 1242

 Lab Sample ID:
 500-23216-2
 Date Received:
 12/19/2009
 0900

Client Matrix: Water

Job Number: 500-23216-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Method: 8260B		Date Analyzed: 12/24/2009 1508			
Prep Method: 5030B			repared:	12/24/2009 1508	
Benzene	<5.0	ug/L	0.15	5.0	1.0
Chloromethane	<5.0	ug/L	0.14	5.0	1.0
Vinyl chloride	<2.0	ug/L	0.15	2.0	1.0
Bromomethane	<5.0	ug/L	0.45	5.0	1.0
Chloroethane	<5.0	ug/L	0.36	5.0	1.0
1,1-Dichloroethene	22	ug/L	0.23	5.0	1.0
Carbon disulfide	<5.0	ug/L	0.66	5.0	1.0
Acetone	<20 *	ug/L	2.1	20	1.0
Methylene Chloride	<10	ug/L	0.52	10	1.0
trans-1,2-Dichloroethene	<5.0	ug/L	0.18	5.0	1.0
1,1-Dichloroethane	<5.0	ug/L	0.12	5.0	1.0
cis-1,2-Dichloroethene	92	ug/L	0.15	5.0	1.0
Methyl Ethyl Ketone	<20	ug/L	2.8	20	1.0
Chloroform	<5.0	ug/L	0.15	5.0	1.0
1,1,1-Trichloroethane	25	ug/L	0.14	5.0	1.0
Carbon tetrachloride	<5.0	ug/L	0.32	5.0	1.0
1,2-Dichloroethane	<5.0	ug/L	0.14	5.0	1.0
1,2-Dichloropropane	<5.0	ug/L	0.19	5.0	1.0
Bromodichloromethane	<5.0	ug/L	0.13	5.0	1.0
cis-1,3-Dichloropropene	<5.0	ug/L	0.16	5.0	1.0
methyl isobutyl ketone	<20	ug/L	0.77	20	1.0
Toluene	<5.0	ug/L	0.17	5.0	1.0
trans-1,3-Dichloropropene	<5.0	ug/L	0.21	5.0	1.0
1,1,2-Trichloroethane	<5.0	ug/L	0.22	5.0	1.0
Tetrachloroethene	34	ug/L	0.20	5.0	1.0
2-Hexanone	<20	ug/L	0.77	20	1.0
Dibromochloromethane	<5.0	ug/L	0.17	5.0	1.0
Chlorobenzene	<5.0	ug/L	0.17	5.0	1.0
Ethylbenzene	<5.0	ug/L	0.22	5.0	1.0
Styrene	<5.0	ug/L	0.17	5.0	1.0
Bromoform	<5.0	ug/L	0.30	5.0	1.0
1,1,2,2-Tetrachloroethane	<5.0	ug/L	0.27	5.0	1.0
Xylenes, Total	<5.0	ug/L	0.42	5.0	1.0
Surrogate				Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	121	%		72 - 135	
Toluene-d8 (Surr)	100	%		80 - 120	
4-Bromofluorobenzene (Surr)	89	%		77 - 120	
Dibromofluoromethane	112	%		79 - 133	

Client Sample ID: MW2 Lab Sample ID: 500-23

Date Sampled: 12/17/2009 1242 Date Received: 12/19/2009 0900 500-23216-2

Client Matrix: Water

Job Number: 500-23216-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution	
Method: 8260B Run Type: DL		Date A	nalyzed: 12/2	4/2009 1529		
Prep Method: 5030B		Date P	repared: 12/2	4/2009 1529		
Trichloroethene	210	ug/L	0.80	25	5.0	
Surrogate		Acceptance Limits				
1,2-Dichloroethane-d4 (Surr)	126	%		72 - 135		
Toluene-d8 (Surr)	102	% 80 - 120				
4-Bromofluorobenzene (Surr)	87	% 77 - 120				
Dibromofluoromethane	115	% 79 - 133				

Client Sample ID: MW3 Date Sampled: 12/17/2009 1312 Lab Sample ID: 500-23216-3

Date Received: 12/19/2009 0900 Client Matrix: Water

Job Number: 500-23216-1

Analyte Result/Qualifier Unit MDL RL Dilution Date Analyzed: 12/24/2009 1551 Method: 8260B 12/24/2009 1551 Date Prepared: Prep Method: 5030B Benzene <5.0 ug/L 0.15 5.0 1.0 Chloromethane <5.0 ug/L 0.14 5.0 1.0 Vinyl chloride <2.0 ug/L 0.15 2.0 1.0 Bromomethane <5.0 ug/L 0.45 5.0 1.0 Chloroethane <5.0 ug/L 0.36 5.0 1.0 1,1-Dichloroethene 21 0.23 5.0 1.0 ug/L Carbon disulfide <5.0 ug/L 0.66 5.0 1.0 Acetone <20 2.1 20 1.0 ug/L Methylene Chloride <10 0.52 10 1.0 ug/L trans-1.2-Dichloroethene <5.0 0.18 5.0 1.0 ug/L 0.12 1,1-Dichloroethane <5.0 5.0 1.0 ug/L cis-1,2-Dichloroethene 58 ug/L 0.15 5.0 1.0 Methyl Ethyl Ketone <20 ug/L 2.8 20 1.0 <5.0 Chloroform 0.15 5.0 1.0 ug/L 1,1,1-Trichloroethane 27 ug/L 0.14 5.0 1.0 <5.0 0.32 Carbon tetrachloride ug/L 5.0 1.0 <5.0 1,2-Dichloroethane ug/L 0.14 5.0 1.0 1,2-Dichloropropane <5.0 ug/L 0.19 5.0 1.0 Bromodichloromethane <5.0 ug/L 0.13 5.0 1.0 <5.0 5.0 cis-1,3-Dichloropropene 0.16 1.0 ug/L methyl isobutyl ketone <20 ug/L 0.77 20 1.0 Toluene <5.0 ug/L 0.17 5.0 1.0 trans-1,3-Dichloropropene <5.0 ug/L 0.21 5.0 1.0 1,1,2-Trichloroethane <5.0 0.22 5.0 1.0 ug/L Tetrachloroethene 38 0.20 5.0 1.0 ug/L 2-Hexanone <20 ug/L 0.77 20 1.0 Dibromochloromethane <5.0 0.17 5.0 1.0 ug/L Chlorobenzene <5.0 0.17 5.0 1.0 ug/L <5.0 Ethylbenzene ug/L 0.22 5.0 1.0 Styrene <5.0 0.17 5.0 1.0 ug/L <5.0 0.30 5.0 **Bromoform** ug/L 1.0 1,1,2,2-Tetrachloroethane < 5.0 ug/L 0.27 5.0 1.0 Xylenes, Total <5.0 ug/L 0.42 5.0 1.0 Acceptance Limits Surrogate % 72 - 135 1,2-Dichloroethane-d4 (Surr) 127 % Toluene-d8 (Surr) 101 80 - 120 4-Bromofluorobenzene (Surr) 88 % 77 - 120 Dibromofluoromethane % 79 - 133 116

Client Sample ID: MW3 Lab Sample ID: 500-23216-3 Date Sampled: 12/17/2009 1312 Date Received: 12/19/2009 0900

Job Number: 500-23216-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution	
Method: 8260B Run Type: DL		Date A	nalyzed: 12/2	4/2009 1612		
Prep Method: 5030B		Date P	repared: 12/2	4/2009 1612		
Trichloroethene	240	ug/L	0.80	25	5.0	
Surrogate		Acceptance Limits				
1,2-Dichloroethane-d4 (Surr)	125	%		72 - 135		
Toluene-d8 (Surr)	101	% 80 - 120				
4-Bromofluorobenzene (Surr)	89	%		77 - 120		
Dibromofluoromethane	118	%		79 - 133		

Client Sample ID: MW4 Lab Sample ID: 500-23216-4 Date Sampled: 12/17/2009 1346 Date Received: 12/19/2009 0900

Job Number: 500-23216-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Method: 8260B		Date Analyzed: 12/24/2009 1633			
Prep Method: 5030B			repared:	12/24/2009 1633	
Benzene	<5.0	ug/L	0.15	5.0	1.0
Chloromethane	<5.0	ug/L	0.14	5.0	1.0
Vinyl chloride	67	ug/L	0.15	2.0	1.0
Bromomethane	<5.0	ug/L	0.45	5.0	1.0
Chloroethane	<5.0	ug/L	0.36	5.0	1.0
1,1-Dichloroethene	9.8	ug/L	0.23	5.0	1.0
Carbon disulfide	<5.0	ug/L	0.66	5.0	1.0
Acetone	<20 *	ug/L	2.1	20	1.0
Methylene Chloride	<10	ug/L	0.52	10	1.0
trans-1,2-Dichloroethene	<5.0	ug/L	0.18	5.0	1.0
1,1-Dichloroethane	22	ug/L	0.12	5.0	1.0
Methyl Ethyl Ketone	<20	ug/L	2.8	20	1.0
Chloroform	<5.0	ug/L	0.15	5.0	1.0
1,1,1-Trichloroethane	18	ug/L	0.14	5.0	1.0
Carbon tetrachloride	<5.0	ug/L	0.32	5.0	1.0
1,2-Dichloroethane	<5.0	ug/L	0.14	5.0	1.0
Trichloroethene	<5.0	ug/L	0.16	5.0	1.0
1,2-Dichloropropane	<5.0	ug/L	0.19	5.0	1.0
Bromodichloromethane	<5.0	ug/L	0.13	5.0	1.0
cis-1,3-Dichloropropene	<5.0	ug/L	0.16	5.0	1.0
methyl isobutyl ketone	<20	ug/L	0.77	20	1.0
Toluene	<5.0	ug/L	0.17	5.0	1.0
trans-1,3-Dichloropropene	<5.0	ug/L	0.21	5.0	1.0
1,1,2-Trichloroethane	<5.0	ug/L	0.22	5.0	1.0
Tetrachloroethene	<5.0	ug/L	0.20	5.0	1.0
2-Hexanone	<20	ug/L	0.77	20	1.0
Dibromochloromethane	<5.0	ug/L	0.17	5.0	1.0
Chlorobenzene	<5.0	ug/L	0.17	5.0	1.0
Ethylbenzene	<5.0	ug/L	0.22	5.0	1.0
Styrene	<5.0	ug/L	0.17	5.0	1.0
Bromoform	<5.0	ug/L	0.30	5.0	1.0
1,1,2,2-Tetrachloroethane	<5.0	ug/L	0.27	5.0	1.0
Xylenes, Total	<5.0	ug/L	0.42	5.0	1.0
Surrogate				Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	123	%		72 - 135	
Toluene-d8 (Surr)	101	%		80 - 120	
4-Bromofluorobenzene (Surr)	90	%		77 - 120	
Dibromofluoromethane	115	%		79 - 133	

Client Sample ID: MW4
Lab Sample ID: 500-23216-4

Date Sampled: 12/17/2009 1346 Date Received: 12/19/2009 0900

Job Number: 500-23216-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Method: 8260B Run Type: DL		Date A	nalyzed: 12/2	4/2009 1652	
Prep Method: 5030B		Date P	repared: 12/2	4/2009 1652	
cis-1,2-Dichloroethene	160	ug/L	0.75	25	5.0
Surrogate			Acc	ceptance Limit	s
1,2-Dichloroethane-d4 (Surr)	128	%		72 - 135	
Toluene-d8 (Surr)	99	% 80 - 120			
4-Bromofluorobenzene (Surr)	87	%		77 - 120	
Dibromofluoromethane	116	%		79 - 133	

Method: 8260B Run Type: DL

 Client Sample ID:
 MW5
 Date Sampled:
 12/17/2009
 1416

 Lab Sample ID:
 500-23216-5
 Date Received:
 12/19/2009
 0900

Client Matrix: Water

Job Number: 500-23216-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Method: 8260B		Date A	nalyzed:	12/24/2009 1713	
Prep Method: 5030B		Date P	repared:	12/24/2009 1713	
Benzene	<5.0	ug/L	0.15	5.0	1.0
Chloromethane	<5.0	ug/L	0.14	5.0	1.0
Vinyl chloride	7.2	ug/L	0.15	2.0	1.0
Bromomethane	<5.0	ug/L	0.45	5.0	1.0
Chloroethane	<5.0	ug/L	0.36	5.0	1.0
1,1-Dichloroethene	26	ug/L	0.23	5.0	1.0
Carbon disulfide	<5.0	ug/L	0.66	5.0	1.0
Acetone	<20 *	ug/L	2.1	20	1.0
Methylene Chloride	<10	ug/L	0.52	10	1.0
trans-1,2-Dichloroethene	<5.0	ug/L	0.18	5.0	1.0
1,1-Dichloroethane	6.6	ug/L	0.12	5.0	1.0
Methyl Ethyl Ketone	<20	ug/L	2.8	20	1.0
Chloroform	<5.0	ug/L	0.15	5.0	1.0
1,1,1-Trichloroethane	39	ug/L	0.14	5.0	1.0
Carbon tetrachloride	<5.0	ug/L	0.32	5.0	1.0
1,2-Dichloroethane	<5.0	ug/L	0.14	5.0	1.0
1,2-Dichloropropane	<5.0	ug/L	0.19	5.0	1.0
Bromodichloromethane	<5.0	ug/L	0.13	5.0	1.0
cis-1,3-Dichloropropene	<5.0	ug/L	0.16	5.0	1.0
methyl isobutyl ketone	<20	ug/L	0.77	20	1.0
Toluene	<5.0	ug/L	0.17	5.0	1.0
trans-1,3-Dichloropropene	<5.0	ug/L	0.21	5.0	1.0
1,1,2-Trichloroethane	<5.0	ug/L	0.22	5.0	1.0
Tetrachloroethene	42	ug/L	0.20	5.0	1.0
2-Hexanone	<20	ug/L	0.77	20	1.0
Dibromochloromethane	<5.0	ug/L	0.17	5.0	1.0
Chlorobenzene	<5.0	ug/L	0.17	5.0	1.0
Ethylbenzene	<5.0	ug/L	0.22	5.0	1.0
Styrene	<5.0	ug/L	0.17	5.0	1.0
Bromoform	<5.0	ug/L	0.30	5.0	1.0
1,1,2,2-Tetrachloroethane	<5.0	ug/L	0.27	5.0	1.0
Xylenes, Total	<5.0	ug/L	0.42	5.0	1.0
Surrogate				Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	126	%		72 - 135	
Toluene-d8 (Surr)	103	%		80 - 120	
4-Bromofluorobenzene (Surr)	88	%		77 - 120	
Dibromofluoromethane	117	%		79 - 133	

Date Analyzed:

12/29/2009 1327

Client Sample ID: MW5 Lab Sample ID: 500-2 500-23216-5 Date Sampled: 12/17/2009 1416 Date Received: 12/19/2009 0900

Job Number: 500-23216-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution	
Prep Method: 5030B		Date P	repared: 12/2	9/2009 1327		
cis-1,2-Dichloroethene	140	ug/L	0.75	25	5.0	
Trichloroethene	230	ug/L	0.80	25	5.0	
Surrogate			Ac	ceptance Limits	S	
1,2-Dichloroethane-d4 (Surr)	117	%		72 - 135		
Toluene-d8 (Surr)	104	%	% 80 - 120			
4-Bromofluorobenzene (Surr)	89	% 77 - 120				
Dibromofluoromethane	103	% 79 - 133				

Method: 8260B Run Type: DL

 Client Sample ID:
 MW6
 Date Sampled:
 12/17/2009
 1447

 Lab Sample ID:
 500-23216-6
 Date Received:
 12/19/2009
 0900

Client Matrix: Water

Job Number: 500-23216-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Method: 8260B		Date A	Analyzed: 12/24/2009 1758		
Prep Method: 5030B			•	12/24/2009 1758	
Benzene	<5.0	ug/L	0.15	5.0	1.0
Chloromethane	<5.0	ug/L	0.14	5.0	1.0
Vinyl chloride	18	ug/L	0.15	2.0	1.0
Bromomethane	<5.0	ug/L	0.45	5.0	1.0
Chloroethane	<5.0	ug/L	0.36	5.0	1.0
1,1-Dichloroethene	24	ug/L	0.23	5.0	1.0
Carbon disulfide	<5.0	ug/L	0.66	5.0	1.0
Acetone	<20 *	ug/L	2.1	20	1.0
Methylene Chloride	<10	ug/L	0.52	10	1.0
trans-1,2-Dichloroethene	<5.0	ug/L	0.18	5.0	1.0
1,1-Dichloroethane	6.7	ug/L	0.12	5.0	1.0
Methyl Ethyl Ketone	<20	ug/L	2.8	20	1.0
Chloroform	<5.0	ug/L	0.15	5.0	1.0
1,1,1-Trichloroethane	37	ug/L	0.14	5.0	1.0
Carbon tetrachloride	<5.0	ug/L	0.32	5.0	1.0
1,2-Dichloroethane	<5.0	ug/L	0.14	5.0	1.0
1,2-Dichloropropane	<5.0	ug/L	0.19	5.0	1.0
Bromodichloromethane	<5.0	ug/L	0.13	5.0	1.0
cis-1,3-Dichloropropene	<5.0	ug/L	0.16	5.0	1.0
methyl isobutyl ketone	<20	ug/L	0.77	20	1.0
Toluene	<5.0	ug/L	0.17	5.0	1.0
trans-1,3-Dichloropropene	<5.0	ug/L	0.21	5.0	1.0
1,1,2-Trichloroethane	<5.0	ug/L	0.22	5.0	1.0
Tetrachloroethene	<5.0	ug/L	0.20	5.0	1.0
2-Hexanone	<20	ug/L	0.77	20	1.0
Dibromochloromethane	<5.0	ug/L	0.17	5.0	1.0
Chlorobenzene	<5.0	ug/L	0.17	5.0	1.0
Ethylbenzene	<5.0	ug/L	0.22	5.0	1.0
Styrene	<5.0	ug/L	0.17	5.0	1.0
Bromoform	<5.0	ug/L	0.30	5.0	1.0
1,1,2,2-Tetrachloroethane	<5.0	ug/L	0.27	5.0	1.0
Xylenes, Total	<5.0	ug/L	0.42	5.0	1.0
Surrogate				Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	124	%		72 - 135	
Toluene-d8 (Surr)	101	%		80 - 120	
4-Bromofluorobenzene (Surr)	90	%		77 - 120	
Dibromofluoromethane	114	%		79 - 133	

Date Analyzed:

12/24/2009 1820

Client Sample ID: MW6 Lab Sample ID: 500-2 500-23216-6 Date Sampled: 12/17/2009 1447 Date Received: 12/19/2009 0900

Job Number: 500-23216-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution	
Prep Method: 5030B		Date P	repared: 12/2	4/2009 1820		
cis-1,2-Dichloroethene	190	ug/L	0.75	25	5.0	
Trichloroethene	150	ug/L	0.80	25	5.0	
Surrogate		Acceptance Limits				
1,2-Dichloroethane-d4 (Surr)	129	%		72 - 135		
Toluene-d8 (Surr)	101	%	% 80 - 120			
4-Bromofluorobenzene (Surr)	87	% 77 - 120				
Dibromofluoromethane	115	% 79 - 133				

Client Sample ID: MW7 Lab Sample ID: 500-2 500-23216-7 Date Sampled: 12/17/2009 1200 Date Received: 12/19/2009 0900

Job Number: 500-23216-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Method: 8260B		Date Analyzed: 12/24/2009 1841			
Prep Method: 5030B			repared:	12/24/2009 1841	
Benzene	<5.0	ug/L	0.15	5.0	1.0
Chloromethane	<5.0	ug/L	0.14	5.0	1.0
Vinyl chloride	2.1	ug/L	0.15	2.0	1.0
Bromomethane	<5.0	ug/L	0.45	5.0	1.0
Chloroethane	<5.0	ug/L	0.36	5.0	1.0
1,1-Dichloroethene	23	ug/L	0.23	5.0	1.0
Carbon disulfide	<5.0	ug/L	0.66	5.0	1.0
Acetone	<20 *	ug/L	2.1	20	1.0
Methylene Chloride	<10	ug/L	0.52	10	1.0
trans-1,2-Dichloroethene	<5.0	ug/L	0.18	5.0	1.0
1,1-Dichloroethane	<5.0	ug/L	0.12	5.0	1.0
cis-1,2-Dichloroethene	95	ug/L	0.15	5.0	1.0
Methyl Ethyl Ketone	<20	ug/L	2.8	20	1.0
Chloroform	<5.0	ug/L	0.15	5.0	1.0
1,1,1-Trichloroethane	27	ug/L	0.14	5.0	1.0
Carbon tetrachloride	<5.0	ug/L	0.32	5.0	1.0
1,2-Dichloroethane	<5.0	ug/L	0.14	5.0	1.0
1,2-Dichloropropane	<5.0	ug/L	0.19	5.0	1.0
Bromodichloromethane	<5.0	ug/L	0.13	5.0	1.0
cis-1,3-Dichloropropene	<5.0	ug/L	0.16	5.0	1.0
methyl isobutyl ketone	<20	ug/L	0.77	20	1.0
Toluene	<5.0	ug/L	0.17	5.0	1.0
trans-1,3-Dichloropropene	<5.0	ug/L	0.21	5.0	1.0
1,1,2-Trichloroethane	<5.0	ug/L	0.22	5.0	1.0
Tetrachloroethene	35	ug/L	0.20	5.0	1.0
2-Hexanone	<20	ug/L	0.77	20	1.0
Dibromochloromethane	<5.0	ug/L	0.17	5.0	1.0
Chlorobenzene	<5.0	ug/L	0.17	5.0	1.0
Ethylbenzene	<5.0	ug/L	0.22	5.0	1.0
Styrene	<5.0	ug/L	0.17	5.0	1.0
Bromoform	<5.0	ug/L	0.30	5.0	1.0
1,1,2,2-Tetrachloroethane	<5.0	ug/L	0.27	5.0	1.0
Xylenes, Total	<5.0	ug/L	0.42	5.0	1.0
Surrogate		Acceptance Limits			
1,2-Dichloroethane-d4 (Surr)	127	%		72 - 135	
Toluene-d8 (Surr)	101	%		80 - 120	
4-Bromofluorobenzene (Surr)	88	%		77 - 120	
Dibromofluoromethane	116	%		79 - 133	

Client Sample ID: MW7 Lab Sample ID: 500-2 500-23216-7 Date Sampled: 12/17/2009 1200 Date Received: 12/19/2009 0900

Job Number: 500-23216-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution	
Method: 8260B Run Type: DL		Date A	nalyzed: 12/	24/2009 1902		
Prep Method: 5030B		Date P	repared: 12/	24/2009 1902		
Trichloroethene	200	ug/L	0.80	25	5.0	
Surrogate		Acceptance Limits				
1,2-Dichloroethane-d4 (Surr)	124	%		72 - 135		
Toluene-d8 (Surr)	101	% 80 - 120				
4-Bromofluorobenzene (Surr)	87	% 77 - 120				
Dibromofluoromethane	117	% 79 - 133				

Client Sample ID: MW8

Date Sampled: 12/18/2009 1036 Lab Sample ID: 500-23216-8 Date Received: 12/19/2009 0900

Client Matrix: Water

Job Number: 500-23216-1

Analyte	alyte Result/Qualifier		MDL	Dilution	
Method: 8260B		Date Analyzed: 12/24/2009 1924			
Prep Method: 5030B		Date P	repared: 12/2	24/2009 1924	
Benzene	<5.0	ug/L	0.15	5.0	1.0
Chloromethane	<5.0	ug/L	0.14	5.0	1.0
Vinyl chloride	<2.0	ug/L	0.15	2.0	1.0
Bromomethane	<5.0	ug/L	0.45	5.0	1.0
Chloroethane	<5.0	ug/L	0.36	5.0	1.0
1,1-Dichloroethene	7.1	ug/L	0.23	5.0	1.0
Carbon disulfide	<5.0	ug/L	0.66	5.0	1.0
Acetone	<20 *	ug/L	2.1	20	1.0
Methylene Chloride	<10	ug/L	0.52	10	1.0
trans-1,2-Dichloroethene	<5.0	ug/L	0.18	5.0	1.0
1,1-Dichloroethane	12	ug/L	0.12	5.0	1.0
cis-1,2-Dichloroethene	29	ug/L	0.15	5.0	1.0
Methyl Ethyl Ketone	<20	ug/L	2.8	20	1.0
Chloroform	<5.0	ug/L	0.15	5.0	1.0
1,1,1-Trichloroethane	11	ug/L	0.14	5.0	1.0
Carbon tetrachloride	<5.0	ug/L	0.32	5.0	1.0
1,2-Dichloroethane	<5.0	ug/L	0.14	5.0	1.0
Trichloroethene	75	ug/L	0.16	5.0	1.0
1,2-Dichloropropane	<5.0	ug/L	0.19	5.0	1.0
Bromodichloromethane	<5.0	ug/L	0.13	5.0	1.0
cis-1,3-Dichloropropene	<5.0	ug/L	0.16	5.0	1.0
methyl isobutyl ketone	<20	ug/L	0.77	20	1.0
Toluene	<5.0	ug/L	0.17	5.0	1.0
trans-1,3-Dichloropropene	<5.0	ug/L	0.21	5.0	1.0
1,1,2-Trichloroethane	<5.0	ug/L	0.22	5.0	1.0
Tetrachloroethene	<5.0	ug/L	0.20	5.0	1.0
2-Hexanone	<20	ug/L	0.77	20	1.0
Dibromochloromethane	<5.0	ug/L	0.17	5.0	1.0
Chlorobenzene	<5.0	ug/L	0.17	5.0	1.0
Ethylbenzene	<5.0	ug/L	0.22	5.0	1.0
Styrene	<5.0	ug/L	0.17	5.0	1.0
Bromoform	<5.0	ug/L	0.30	5.0	1.0
1,1,2,2-Tetrachloroethane	<5.0	ug/L	0.27	5.0	1.0
Xylenes, Total	<5.0	ug/L	0.42	5.0	1.0
Surrogate		Acceptance Limits			
1,2-Dichloroethane-d4 (Surr)	129	%		72 - 135	
Toluene-d8 (Surr)	103	%		80 - 120	
4-Bromofluorobenzene (Surr)	88	%		77 - 120	

Client Sample ID: MW8 Lab Sample ID: 500-2 500-23216-8 Date Sampled: 12/18/2009 1036 Date Received: 12/19/2009 0900

Job Number: 500-23216-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Surrogate			Acc	ceptance Limit	S
Dibromofluoromethane	117	%	79 - 133		

 Client Sample ID:
 MW9
 Date Sampled:
 12/18/2009
 1107

 Lab Sample ID:
 500-23216-9
 Date Received:
 12/19/2009
 0900

Client Matrix: Water

Job Number: 500-23216-1

alyte Result/Qualifier		Unit	MDL	RL	Dilution
Method: 8260B		Date Analyzed: 12/29/2009 1351			
Prep Method: 5030B		Date P	repared:	12/29/2009 1351	
Benzene	<5.0	ug/L	0.15	5.0	1.0
Chloromethane	<5.0	ug/L	0.14	5.0	1.0
Vinyl chloride	<2.0	ug/L	0.15	2.0	1.0
Bromomethane	<5.0	ug/L	0.45	5.0	1.0
Chloroethane	<5.0	ug/L	0.36	5.0	1.0
1,1-Dichloroethene	<5.0	ug/L	0.23	5.0	1.0
Carbon disulfide	<5.0	ug/L	0.66	5.0	1.0
Acetone	<20	ug/L	2.1	20	1.0
Methylene Chloride	<10	ug/L	0.52	10	1.0
trans-1,2-Dichloroethene	<5.0	ug/L	0.18	5.0	1.0
1,1-Dichloroethane	<5.0	ug/L	0.12	5.0	1.0
cis-1,2-Dichloroethene	<5.0	ug/L	0.15	5.0	1.0
Methyl Ethyl Ketone	<20	ug/L	2.8	20	1.0
Chloroform	<5.0	ug/L	0.15	5.0	1.0
1,1,1-Trichloroethane	<5.0	ug/L	0.14	5.0	1.0
Carbon tetrachloride	<5.0 *	ug/L	0.32	5.0	1.0
1,2-Dichloroethane	<5.0	ug/L	0.14	5.0	1.0
Trichloroethene	<5.0	ug/L	0.16	5.0	1.0
1,2-Dichloropropane	<5.0	ug/L	0.19	5.0	1.0
Bromodichloromethane	<5.0	ug/L	0.13	5.0	1.0
cis-1,3-Dichloropropene	<5.0	ug/L	0.16	5.0	1.0
methyl isobutyl ketone	<20	ug/L	0.77	20	1.0
Toluene	<5.0	ug/L	0.17	5.0	1.0
trans-1,3-Dichloropropene	<5.0	ug/L	0.21	5.0	1.0
1,1,2-Trichloroethane	<5.0	ug/L	0.22	5.0	1.0
Tetrachloroethene	<5.0	ug/L	0.20	5.0	1.0
2-Hexanone	<20	ug/L	0.77	20	1.0
Dibromochloromethane	<5.0	ug/L	0.17	5.0	1.0
Chlorobenzene	<5.0	ug/L	0.17	5.0	1.0
Ethylbenzene	<5.0	ug/L	0.22	5.0	1.0
Styrene	<5.0	ug/L	0.17	5.0	1.0
Bromoform	<5.0	ug/L	0.30	5.0	1.0
1,1,2,2-Tetrachloroethane	<5.0	ug/L	0.27	5.0	1.0
Xylenes, Total	<5.0	ug/L	0.42	5.0	1.0
Surrogate			Acceptance Limits		
1,2-Dichloroethane-d4 (Surr)	115	%		72 - 135	
Toluene-d8 (Surr)	102	%		80 - 120	
4-Bromofluorobenzene (Surr)	95	%		77 - 120	

Client Sample ID: MW9 Lab Sample ID: 500-2 500-23216-9 Date Sampled: 12/18/2009 1107 Date Received: 12/19/2009 0900

Job Number: 500-23216-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Surrogate			Acc	ceptance Limit	S
Dibromofluoromethane	105	%		79 - 133	

Client Sample ID: F.B. Lab Sample ID: 500-2 500-23216-10 Date Sampled: 12/17/2009 1455 Date Received: 12/19/2009 0900

Job Number: 500-23216-1

Analyte	rte Result/Qualifier		MDL	RL	Dilution
Method: 8260B		Date Analyzed: 12/24/2009 2006			
Prep Method: 5030B		Date P	repared:	12/24/2009 2006	
Benzene	<5.0	ug/L	0.15	5.0	1.0
Chloromethane	<5.0	ug/L	0.14	5.0	1.0
Vinyl chloride	<2.0	ug/L	0.15	2.0	1.0
Bromomethane	<5.0	ug/L	0.45	5.0	1.0
Chloroethane	<5.0	ug/L	0.36	5.0	1.0
1,1-Dichloroethene	<5.0	ug/L	0.23	5.0	1.0
Carbon disulfide	<5.0	ug/L	0.66	5.0	1.0
Acetone	<20 *	ug/L	2.1	20	1.0
Methylene Chloride	<10	ug/L	0.52	10	1.0
trans-1,2-Dichloroethene	<5.0	ug/L	0.18	5.0	1.0
1,1-Dichloroethane	<5.0	ug/L	0.12	5.0	1.0
cis-1,2-Dichloroethene	<5.0	ug/L	0.15	5.0	1.0
Methyl Ethyl Ketone	<20	ug/L	2.8	20	1.0
Chloroform	<5.0	ug/L	0.15	5.0	1.0
1,1,1-Trichloroethane	<5.0	ug/L	0.14	5.0	1.0
Carbon tetrachloride	<5.0	ug/L	0.32	5.0	1.0
1,2-Dichloroethane	<5.0	ug/L	0.14	5.0	1.0
Trichloroethene	<5.0	ug/L	0.16	5.0	1.0
1,2-Dichloropropane	<5.0	ug/L	0.19	5.0	1.0
Bromodichloromethane	<5.0	ug/L	0.13	5.0	1.0
cis-1,3-Dichloropropene	<5.0	ug/L	0.16	5.0	1.0
methyl isobutyl ketone	<20	ug/L	0.77	20	1.0
Toluene	<5.0	ug/L	0.17	5.0	1.0
trans-1,3-Dichloropropene	<5.0	ug/L	0.21	5.0	1.0
1,1,2-Trichloroethane	<5.0	ug/L	0.22	5.0	1.0
Tetrachloroethene	<5.0	ug/L	0.20	5.0	1.0
2-Hexanone	<20	ug/L	0.77	20	1.0
Dibromochloromethane	<5.0	ug/L	0.17	5.0	1.0
Chlorobenzene	<5.0	ug/L	0.17	5.0	1.0
Ethylbenzene	<5.0	ug/L	0.22	5.0	1.0
Styrene	<5.0	ug/L	0.17	5.0	1.0
Bromoform	<5.0	ug/L	0.30	5.0	1.0
1,1,2,2-Tetrachloroethane	<5.0	ug/L	0.27	5.0	1.0
Xylenes, Total	<5.0	ug/L	0.42	5.0	1.0
Surrogate			Acceptance Limits		
1,2-Dichloroethane-d4 (Surr)	127	%		72 - 135	
Toluene-d8 (Surr)	101	%		80 - 120	
4-Bromofluorobenzene (Surr)	88	%		77 - 120	

Client Sample ID: F.B. Lab Sample ID: 500-

500-23216-10

Date Sampled: 12/17/2009 1455 Date Received: 12/19/2009 0900

Job Number: 500-23216-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Surrogate			Acc	ceptance Limit	s
Dibromofluoromethane	120	%		79 - 133	

DATA REPORTING QUALIFIERS

Client: Environmental Information Logistics (EIL Job Number: 500-23216-1

Lab Section	Qualifier	Description
GC/MS VOA		
	*	LCS or LCSD exceeds the control limits
	F	MS or MSD exceeds the control limits
	4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable.
	Е	Result exceeded calibration range.
	*	RPD of the LCS and LCSD exceeds the control limits

QUALITY CONTROL RESULTS

Client: Environmental Information Logistics (EIL Job Number: 500-23216-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:500-7813	36				
LCS 500-78136/5	Lab Control Sample	T	Water	8260B	
LCSD 500-78136/6	Lab Control Sample Duplicate	T	Water	8260B	
MB 500-78136/4	Method Blank	T	Water	8260B	
500-23216-1	MW1	T	Water	8260B	
500-23216-1DL	MW1	T	Water	8260B	
500-23216-1MS	Matrix Spike	T	Water	8260B	
500-23216-1MSD	Matrix Spike Duplicate	T	Water	8260B	
500-23216-2	MW2	T	Water	8260B	
500-23216-2DL	MW2	T	Water	8260B	
500-23216-3	MW3	T	Water	8260B	
500-23216-3DL	MW3	T	Water	8260B	
500-23216-4	MW4	T	Water	8260B	
500-23216-4DL	MW4	T	Water	8260B	
500-23216-5	MW5	T	Water	8260B	
500-23216-6	MW6	T	Water	8260B	
500-23216-6DL	MW6	T	Water	8260B	
500-23216-7	MW7	T	Water	8260B	
500-23216-7DL	MW7	T	Water	8260B	
500-23216-8	MW8	T	Water	8260B	
500-23216-10	F.B.	T	Water	8260B	
Analysis Batch:500-7819	99				
LCS 500-78199/5	Lab Control Sample	Т	Water	8260B	
MB 500-78199/4	Method Blank	Т	Water	8260B	
500-23216-5DL	MW5	Ť	Water	8260B	
500-23216-9	MW9	T	Water	8260B	

Report Basis

T = Total

Client: Environmental Information Logistics (EIL Job Number: 500-23216-1

Surrogate Recovery Report

8260B Volatile Organic Compounds (GC/MS)

Lab Sample ID	Client Sample ID	DCA %Rec	TOL %Rec	BFB %Rec	DBFM %Rec
500-23216-1	MW1	122	101	95	113
500-23216-1 DL	MW1 DL	123	101	92	114
500-23216-2	MW2	121	100	89	112
500-23216-2 DL	MW2 DL	126	102	87	115
500-23216-3	MW3	127	101	88	116
500-23216-3 DL	MW3 DL	125	101	89	118
500-23216-4	MW4	123	101	90	115
500-23216-4 DL	MW4 DL	128	99	87	116
500-23216-5 DL	MW5 DL	117	104	89	103
500-23216-5	MW5	126	103	88	117
500-23216-6	MW6	124	101	90	114
500-23216-6 DL	MW6 DL	129	101	87	115
500-23216-7	MW7	127	101	88	116
500-23216-7 DL	MW7 DL	124	101	87	117
500-23216-8	MW8	129	103	88	117
500-23216-9	MW9	115	102	95	105
500-23216-10	F.B.	127	101	88	120
MB 500-78136/4		115	101	91	109
MB 500-78199/4		112	101	90	101
LCS 500-78136/5		117	106	101	108
LCS 500-78199/5		116	100	111	103
LCSD 500-78136/6		113	105	99	107
500-23216-1 MS	MW1 MS	119	106	99	113
500-23216-1 MSD	MW1 MSD	116	104	99	110

Surrogate	Acceptance Limits
DCA = 1,2-Dichloroethane-d4 (Surr)	72-135
TOL = Toluene-d8 (Surr)	80-120
BFB = 4-Bromofluorobenzene (Surr)	77-120
DRFM = Dibromofluoromethane	79-133

Client: Environmental Information Logistics (EIL Job Number: 500-23216-1

Method Blank - Batch: 500-78136 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 500-78136/4 Analysis Batch: 500-78136 Instrument ID: Agilent 6890A GC - 5973 N

Client Matrix: Water Prep Batch: N/A Lab File ID: 22M1224.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 12/24/2009 1217 Final Weight/Volume: 10 mL

Date Analyzed: 12/24/2009 1217 Date Prepared: 12/24/2009 1217

Analyte	Result	Qual	MDL	RL
Benzene	<5.0		0.15	5.0
Chloromethane	<5.0		0.14	5.0
Vinyl chloride	<2.0		0.15	2.0
Bromomethane	<5.0		0.45	5.0
Chloroethane	<5.0		0.36	5.0
1,1-Dichloroethene	<5.0		0.23	5.0
Carbon disulfide	<5.0		0.66	5.0
Acetone	<20		2.1	20
Methylene Chloride	<10		0.52	10
trans-1,2-Dichloroethene	<5.0		0.18	5.0
1,1-Dichloroethane	<5.0		0.12	5.0
cis-1,2-Dichloroethene	<5.0		0.15	5.0
Methyl Ethyl Ketone	<20		2.8	20
Chloroform	<5.0		0.15	5.0
1,1,1-Trichloroethane	<5.0		0.14	5.0
Carbon tetrachloride	<5.0		0.32	5.0
1,2-Dichloroethane	<5.0		0.14	5.0
Trichloroethene	<5.0		0.16	5.0
1,2-Dichloropropane	<5.0		0.19	5.0
Bromodichloromethane	<5.0		0.13	5.0
cis-1,3-Dichloropropene	<5.0		0.16	5.0
methyl isobutyl ketone	<20		0.77	20
Toluene	<5.0		0.17	5.0
trans-1,3-Dichloropropene	<5.0		0.21	5.0
1,1,2-Trichloroethane	<5.0		0.22	5.0
Tetrachloroethene	<5.0		0.20	5.0
2-Hexanone	<20		0.77	20
Dibromochloromethane	<5.0		0.17	5.0
Chlorobenzene	<5.0		0.17	5.0
Ethylbenzene	<5.0		0.22	5.0
Styrene	<5.0		0.17	5.0
Bromoform	<5.0		0.30	5.0
1,1,2,2-Tetrachloroethane	<5.0		0.27	5.0
Xylenes, Total	<5.0		0.42	5.0
Surrogate	% Rec	Acc	eptance Limits	
1,2-Dichloroethane-d4 (Surr)	115		72 - 135	
Toluene-d8 (Surr)	101		80 - 120	
4-Bromofluorobenzene (Surr)	91		77 - 120	
Dibromofluoromethane	109		79 - 133	

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: Environmental Information Logistics (EIL Job Number: 500-23216-1

Lab Control Sample/
Lab Control Sample Duplicate Recovery Report - Batch: 500-78136

Method: 8260B
Preparation: 5030B

LCS Lab Sample ID: LCS 500-78136/5

Client Matrix: Water Dilution: 1.0

Date Analyzed: 12/24/2009 1237 Date Prepared: 12/24/2009 1237 Analysis Batch: 500-78136

Prep Batch: N/A Units: ug/L

Instrument ID: Agilent 6890A GC - 5973 N

Lab File ID: 22S1224.D
Initial Weight/Volume: 10 mL
Final Weight/Volume: 10 mL

LCSD Lab Sample ID: LCSD 500-78136/6

Client Matrix: Water Dilution: 1.0

Date Analyzed: 12/24/2009 2235 Date Prepared: 12/24/2009 2235 Analysis Batch: 500-78136 Instrument ID: Agilent 6890A GC - 5973

Prep Batch: N/A Lab File ID: 22T1224.D
Units: ug/L Initial Weight/Volume: 10 mL
Final Weight/Volume: 10 mL

	<u>%</u>	Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Benzene	105	104	70 - 120	1	20		
Chloromethane	90	95	56 - 133	6	20		
Vinyl chloride	82	88	75 - 158	8	20		
Bromomethane	115	120	56 - 154	4	20		
Chloroethane	100	100	60 - 144	1	20		
1,1-Dichloroethene	82	80	55 - 129	2	20		
Carbon disulfide	66	63	31 - 146	4	20		
Acetone	94	72	29 - 152	27	20		*
Methylene Chloride	86	85	63 - 128	1	20		
trans-1,2-Dichloroethene	98	100	66 - 120	2	20		
1,1-Dichloroethane	94	96	65 - 120	2	20		
cis-1,2-Dichloroethene	90	93	72 - 123	4	20		
Methyl Ethyl Ketone	88	83	47 - 138	5	20		
Chloroform	105	104	70 - 120	1	20		
1,1,1-Trichloroethane	105	101	64 - 122	3	20		
Carbon tetrachloride	114	109	62 - 122	4	20		
1,2-Dichloroethane	111	106	62 - 120	4	20		
Trichloroethene	95	92	71 - 120	3	20		
1,2-Dichloropropane	92	92	75 - 120	0	20		
Bromodichloromethane	102	97	74 - 120	5	20		
cis-1,3-Dichloropropene	93	90	65 - 120	3	20		
methyl isobutyl ketone	76	85	59 - 120	12	20		
Toluene	108	106	72 - 120	2	20		
trans-1,3-Dichloropropene	88	86	59 - 120	2	20		
1,1,2-Trichloroethane	104	103	68 - 126	1	20		
Tetrachloroethene	96	95	70 - 120	1	20		
2-Hexanone	80	79	56 - 120	1	20		
Dibromochloromethane	89	88	64 - 120	1	20		
Chlorobenzene	101	100	75 - 120	1	20		
Ethylbenzene	98	96	76 - 120	2	20		
Styrene	100	98	76 - 120	1	20		
Bromoform	89	83	58 - 120	7	20		

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: Environmental Information Logistics (EIL Job Number: 500-23216-1

Lab Control Sample/
Lab Control Sample Duplicate Recovery Report - Batch: 500-78136

Method: 8260B
Preparation: 5030B

LCS Lab Sample ID: LCS 500-78136/5

Client Matrix: Water Dilution: 1.0

Date Analyzed: 12/24/2009 1237 Date Prepared: 12/24/2009 1237 Analysis Batch: 500-78136

Prep Batch: N/A Units: ug/L

Instrument ID: Agilent 6890A GC - 5973 N

Lab File ID: 22S1224.D Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

LCSD Lab Sample ID: LCSD 500-78136/6

Client Matrix: Water Dilution: 1.0

Date Analyzed: 12/24/2009 2235 Date Prepared: 12/24/2009 2235 Analysis Batch: 500-78136 Instrument ID: Agilent 6890A GC - 5973

Prep Batch: N/A Lab File ID: 22T1224.D
Units: ug/L Initial Weight/Volume: 10 mL
Final Weight/Volume: 10 mL

	9	6 Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
1,1,2,2-Tetrachloroethane	100	103	69 - 120	4	20		
Xylenes, Total	108	105	74 - 120	3	20		
Surrogate	1	CS % Rec	LCSD %	Poo	Accor	tanaa Limita	
Surroyate	L	CS % Rec	LC3D %	Rec	Accep	tance Limits	
1,2-Dichloroethane-d4 (Surr)		17	113	Rec	·	2 - 135	
	1			Rec	7		
1,2-Dichloroethane-d4 (Surr)	1	17	113	Rec	7:	2 - 135	

Client: Environmental Information Logistics (EIL Job Number: 500-23216-1

Matrix Spike/ Method: 8260B
Matrix Spike Duplicate Recovery Report - Batch: 500-78136 Preparation: 5030B

12/24/2009 2153

Date Prepared:

MS Lab Sample ID: 500-23216-1 Analysis Batch: 500-78136 Instrument ID: Agilent 6890A GC - 5973

Client Matrix: Water Prep Batch: N/A Lab File ID: 23216-01S.D Dilution: 1.0 Initial Weight/Volume: 10 mL

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 12/24/2009 2153 Final Weight/Volume: 10 mL

MSD Lab Sample ID: 500-23216-1 Analysis Batch: 500-78136 Instrument ID: Agilent 6890A GC - 5973 N Client Matrix: Water Prep Batch: N/A Lab File ID: 23216-01T.D

Client Matrix: Water Prep Batch: N/A Lab File ID: 23216-01T.D Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 12/24/2009 2214 Final Weight/Volume: 10 mL Date Prepared: 12/24/2009 2214

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Benzene	111	96	70 - 120	15	20		
Chloromethane	93	94	56 - 133	0	20		
Vinyl chloride	96	93	75 - 158	2	20		
Bromomethane	128	118	56 - 154	8	20		
Chloroethane	107	106	60 - 144	1	20		
1,1-Dichloroethene	90	71	55 - 129	15	20		
Carbon disulfide	71	60	31 - 146	17	20		
Acetone	75	68	29 - 152	10	20		
Methylene Chloride	95	79	63 - 128	19	20		
trans-1,2-Dichloroethene	106	91	66 - 120	15	20		
1,1-Dichloroethane	113	95	65 - 120	11	20		
cis-1,2-Dichloroethene	186	114	72 - 123	10	20	E 4	E 4
Methyl Ethyl Ketone	92	77	47 - 138	17	20		
Chloroform	115	97	70 - 120	16	20		
1,1,1-Trichloroethane	111	89	64 - 122	16	20		
Carbon tetrachloride	120	103	62 - 122	16	20		
1,2-Dichloroethane	123	103	62 - 120	18	20	F	
Trichloroethene	46	23	71 - 120	9	20	F	F
1,2-Dichloropropane	98	85	75 - 120	14	20		
Bromodichloromethane	108	90	74 - 120	19	20		
cis-1,3-Dichloropropene	92	80	65 - 120	14	20		
methyl isobutyl ketone	83	73	59 - 120	13	20		
Toluene	113	96	72 - 120	16	20		
trans-1,3-Dichloropropene	93	79	59 - 120	16	20		
1,1,2-Trichloroethane	114	96	68 - 126	17	20		
Tetrachloroethene	96	81	70 - 120	14	20		
2-Hexanone	79	72	56 - 120	10	20		
Dibromochloromethane	96	82	64 - 120	16	20		
Chlorobenzene	106	91	75 - 120	15	20		

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: Environmental Information Logistics (EIL Job Number: 500-23216-1

Matrix Spike/ Method: 8260B
Matrix Spike Duplicate Recovery Report - Batch: 500-78136 Preparation: 5030B

Date Prepared:

12/24/2009 2153

MS Lab Sample ID: 500-23216-1 Analysis Batch: 500-78136 Instrument ID: Agilent 6890A GC - 5973

Client Matrix: Water Prep Batch: N/A Lab File ID: 23216-01S.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 12/24/2009 2153 Final Weight/Volume: 10 mL

MSD Lab Sample ID: 500-23216-1 Analysis Batch: 500-78136 Instrument ID: Agilent 6890A GC - 5973 N

Client Matrix: Water Prep Batch: N/A Lab File ID: 23216-01T.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 12/24/2009 2214 Final Weight/Volume: 10 mL
Date Prepared: 12/24/2009 2214

	<u>%</u>	Rec.				
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual MSD Qual
Ethylbenzene	103	87	76 - 120	17	20	
Styrene	107	91	76 - 120	17	20	
Bromoform	94	78	58 - 120	19	20	
1,1,2,2-Tetrachloroethane	109	95	69 - 120	14	20	
Xylenes, Total	113	96	74 - 120	16	20	
Surrogate		MS % Rec	MSD ^o	% Rec	Acce	eptance Limits
1,2-Dichloroethane-d4 (Surr)		119	116		7:	2 - 135
Toluene-d8 (Surr)		106	104		80	0 - 120
4-Bromofluorobenzene (Surr)		99	99		7	7 - 120
Dibromofluoromethane		113	110		79	9 - 133

Client: Environmental Information Logistics (EIL Job Number: 500-23216-1

Method Blank - Batch: 500-78199 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 500-78199/4 Analysis Batch: 500-78199 Instrument ID: Agilent 6890N GC - 5973N

Client Matrix: Water Prep Batch: N/A Lab File ID: 2M1229A.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 12/29/2009 1013 Final Weight/Volume: 10 mL

Date Analyzed: 12/29/2009 1013 Date Prepared: 12/29/2009 1013

Analyte	Result	Qual	MDL	RL
Benzene	<5.0		0.15	5.0
Chloromethane	<5.0		0.14	5.0
Vinyl chloride	<2.0		0.15	2.0
Bromomethane	<5.0		0.45	5.0
Chloroethane	<5.0		0.36	5.0
1,1-Dichloroethene	<5.0		0.23	5.0
Carbon disulfide	<5.0		0.66	5.0
Acetone	<20		2.1	20
Methylene Chloride	<10		0.52	10
trans-1,2-Dichloroethene	<5.0		0.18	5.0
1,1-Dichloroethane	<5.0		0.12	5.0
cis-1,2-Dichloroethene	<5.0		0.15	5.0
Methyl Ethyl Ketone	<20		2.8	20
Chloroform	<5.0		0.15	5.0
1,1,1-Trichloroethane	<5.0		0.14	5.0
Carbon tetrachloride	<5.0		0.32	5.0
1,2-Dichloroethane	<5.0		0.14	5.0
Trichloroethene	<5.0		0.16	5.0
1,2-Dichloropropane	<5.0		0.19	5.0
Bromodichloromethane	<5.0		0.13	5.0
cis-1,3-Dichloropropene	<5.0		0.16	5.0
methyl isobutyl ketone	<20		0.77	20
Toluene	<5.0		0.17	5.0
trans-1,3-Dichloropropene	<5.0		0.21	5.0
1,1,2-Trichloroethane	<5.0		0.22	5.0
Tetrachloroethene	<5.0		0.20	5.0
2-Hexanone	<20		0.77	20
Dibromochloromethane	<5.0		0.17	5.0
Chlorobenzene	<5.0		0.17	5.0
Ethylbenzene	<5.0		0.22	5.0
Styrene	<5.0		0.17	5.0
Bromoform	<5.0		0.30	5.0
1,1,2,2-Tetrachloroethane	<5.0		0.27	5.0
Xylenes, Total	<5.0		0.42	5.0
Surrogate	% Rec	Acce	ptance Limits	
1,2-Dichloroethane-d4 (Surr)	112		72 - 135	
Toluene-d8 (Surr)	101		30 - 120	
4-Bromofluorobenzene (Surr)	90		77 - 120	
Dibromofluoromethane	101		79 - 133	

Calculations are performed before rounding to avoid round-off errors in calculated results.

Job Number: 500-23216-1 Client: Environmental Information Logistics (EIL

Lab Control Sample - Batch: 500-78199

Method: 8260B Preparation: 5030B

Lab Sample ID: LCS 500-78199/5

Client Matrix: Water Dilution: 1.0

Date Analyzed: 12/29/2009 1037 Date Prepared: 12/29/2009 1037 Analysis Batch: 500-78199

Prep Batch: N/A

Units: ug/L

Instrument ID: Agilent 6890N GC - 5973N

Lab File ID: 2S1229A.D Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Benzene	25.0	21.9	88	70 - 120	
Chloromethane	25.0	18.0	72	56 - 133	
Vinyl chloride	25.0	20.9	84	75 - 158	
Bromomethane	25.0	33.2	133	56 - 154	
Chloroethane	25.0	26.3	105	60 - 144	
1,1-Dichloroethene	25.0	20.8	83	55 - 129	
Carbon disulfide	25.0	16.2	65	31 - 146	
Acetone	25.0	21.0	84	29 - 152	
Methylene Chloride	25.0	19.5	78	63 - 128	
trans-1,2-Dichloroethene	25.0	20.1	80	66 - 120	
1,1-Dichloroethane	25.0	20.0	80	65 - 120	
cis-1,2-Dichloroethene	25.0	19.3	77	72 - 123	
Methyl Ethyl Ketone	25.0	<20	74	47 - 138	
Chloroform	25.0	21.5	86	70 - 120	
1,1,1-Trichloroethane	25.0	26.1	104	64 - 122	
Carbon tetrachloride	25.0	33.7	135	62 - 122	*
1,2-Dichloroethane	25.0	25.2	101	62 - 120	
Trichloroethene	25.0	25.2	101	71 - 120	
1,2-Dichloropropane	25.0	20.7	83	75 - 120	
Bromodichloromethane	25.0	24.3	97	74 - 120	
cis-1,3-Dichloropropene	26.9	18.4	69	65 - 120	
methyl isobutyl ketone	25.0	<20	61	59 - 120	
Toluene	25.0	21.9	87	72 - 120	
trans-1,3-Dichloropropene	24.3	20.0	82	59 - 120	
1,1,2-Trichloroethane	25.0	17.9	71	68 - 126	
Tetrachloroethene	25.0	24.4	98	70 - 120	
2-Hexanone	25.0	<20	60	56 - 120	
Dibromochloromethane	25.0	23.2	93	64 - 120	
Chlorobenzene	25.0	22.1	88	75 - 120	
Ethylbenzene	25.0	22.8	91	76 - 120	
Styrene	25.0	22.7	91	76 - 120	
Bromoform	25.0	25.5	102	58 - 120	
1,1,2,2-Tetrachloroethane	25.0	19.5	78	69 - 120	
Xylenes, Total	75.0	72.0	96	74 - 120	
Surrogate	% R	ec	Acc	ceptance Limits	
1,2-Dichloroethane-d4 (Surr)	110	6		72 - 135	
Toluene-d8 (Surr)	10			80 - 120	
4-Bromofluorobenzene (Surr)	11			77 - 120	
Dibromofluoromethane	10			79 - 133	

Calculations are performed before rounding to avoid round-off errors in calculated results.

												7- - 1- - 1-
										Mi – Mpe DW – Drinking Water O – Other		ot – Sidoge Ot – Cil
,						73 G	Į.	Islank tioze	Trip Islan	SE+Sedimen: SO-Soil L-Leachaite	·	VW – Wastewater W – Water S – Soil
				Lab Comments:		7.1%	_		Client Comments		Macrix H	
	Hand Delivered	Time		Dane	Company		Received By	Sem!	ele0	Company	3	Reinquished By
Ţ	Shipped	Time		Date	Company	C	Received By	Time	Date	Company	٠.	Reinquished By
	Lab Courier	00kg	12 poleti		Conceny	XX	Repsived By	1200	1) 180°5	Carpeny	4	Hampton Bi
in 1 month)	(A fee may be assessed it samples are relained longer than 1 month)	or assessed if samples	(A fae may b	Archive for Months	Disposar by Lab	Dispos	Return to Client	Other	15 Days	5 Days 10 days	2 Days	1 Day
						ļ	disposal	Sample Disposal		inass Days:	Turnam and Time Requirer (Business Days)	- par meaning
							*	1437 ↓	136761		€33	8
								107	13.18.04		mwg	-0
								1036	13 (80%)		mws	œ
P							·	عدا	-		mw7	7
age								1447			DWW6	<u>~</u>
40								1416			MWS	Ŋ
of	,							1346			F.MW	4
41								[3] 			Mw3	3
								5 6761	[1	MW	7
							₹ ×	1136 359 60	121709	-	mwi	~ ×
Comments							Malrix U O	Time	Samping Date	20 20 20 20 20 20 21 21	C alches	Lab ID MS/MSD
7. None 8. Other										Mianeen LEBRA	Sampler Briand M	Samular (2)
5. NaOH/2n, Coot to 4º 6. Cool to 4º	, cha co			1 a					217	Linas surrivers	——————————————————————————————————————	Frues: Documenta
	ba Lus r			-,,-			<u> </u>	Parameter		Rock	TPC	Project Name
Preservative Key 1. HCL, Cool to 4° 2. H2SQ4 Cool to 4°	<u> </u>						live	Preservative	ajec.#	Client Project #	7	L)
	lemperature °C of Cooler:	lemper		-	PO#/Reference#	-	_		E-Mail:	NEW AIR CODE 10 BU404	AEM ZIP C	_
ب بن 12	·	ı			Fax				Fax:	EFFECTIVE 7/1/09 OUR	EFFECTIVE	
/30	of.	Page			Phone:	ŀ	LH88 H	630-834	Address:	Phone: 708.534.5200 Fax: 709.534.5211	ore: 708.534.520	뀰
/20	Chain of Custody Number:	Chain o			Address:					University Park, IL 60×66	2417 Band Street, I	- - -
918CV	* 200·	Lab Job #:_			Company:			כון		TUE - EADED IN ENVIRONMENTAL TESTING		
Chain of Custody Record	of Custoc	Chain c		(optional)	Bill To Contact:		ichael Hizi	≥	Report To	[estAmericc	st≱r	ਰ

TAL-4124-500 (1006)

Login Sample Receipt Check List

Client: Environmental Information Logistics (EIL

List Source: TestAmerica Chicago

Job Number: 500-23216-1

Login Number: 23216 Creator: Lunt, Jeff T List Number: 1

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	2.3
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Is the Field Sampler's name present on COC?	True	
Sample Preservation Verified	True	

ANALYTICAL REPORT

Job Number: 500-26320-1

Job Description: Interstate Pollution Control Site

For:

Environmental Information Logistics (EIL 975 Burton Street
Unit 10
Beloit, WI 53511

Attention: Ms. Mary Pearson

Rill Khym

Approved for release Richard C Wright Project Manager II 6/30/2010 11:17 AM

Richard C Wright
Project Manager II
richard.wright@testamericainc.com
06/30/2010

These test results meet all the requirements of NELAC for accredited parameters.

The Lab Certification ID#: TestAmerica Chicago 100201

All questions regarding this test report should be directed to the TestAmerica Project Manager whose signature appears on this report. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable.

TestAmerica Laboratories, Inc.

TestAmerica Chicago 2417 Bond Street, University Park, IL 60484 Tel (708) 534-5200 Fax (708) 534-5211 www.testamericainc.com

Job Narrative 500-26320-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

Method(s) 8260B: Due to the high concentration of Trichloroethene, the matrix spike / matrix spike duplicate (MS/MSD) for batch 88631 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria.

Method(s) 8260B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 88631 were outside control limitsfor Cis-1,2-Dichloroethene, 1,1,1-Trichloroethane, Tetrachloroethene, Styrene, and Xylenes. The associated laboratory control sample (LCS) recovery met acceptance criteria.

No other analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: Environmental Information Logistics (EIL

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method
500-26320-1	IPC GW MW1				
Vinyl chloride 1,1-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethe Trichloroethene	ene	16 11 16 130 20	2.0 5.0 5.0 25 5.0	ug/L ug/L ug/L ug/L ug/L	8260B 8260B 8260B 8260B 8260B
500-26320-2	IPC GW MW2				
1,1-Dichloroethene cis-1,2-Dichloroethe 1,1,1-Trichloroethar Trichloroethene Tetrachloroethene		23 58 22 200 33	5.0 5.0 5.0 25 5.0	ug/L ug/L ug/L ug/L ug/L	8260B 8260B 8260B 8260B 8260B
500-26320-3	IPC GW MW3				
1,1-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethe 1,1,1-Trichloroethan Trichloroethene Tetrachloroethene		23 5.2 56 24 210 40	5.0 5.0 5.0 5.0 25 5.0	ug/L ug/L ug/L ug/L ug/L ug/L	8260B 8260B 8260B 8260B 8260B 8260B
500-26320-4	IPC GW MW4				
Vinyl chloride 1,1-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethe 1,1,1-Trichloroethar		76 11 20 150 17	2.0 5.0 5.0 25 5.0	ug/L ug/L ug/L ug/L ug/L	8260B 8260B 8260B 8260B 8260B
500-26320-5	IPC GW MW5				
Vinyl chloride 1,1-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethen 1,1,1-Trichloroethan Trichloroethene Tetrachloroethene		5.7 23 5.5 120 27 160 37	2.0 5.0 5.0 25 5.0 25 5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	8260B 8260B 8260B 8260B 8260B 8260B 8260B

Job Number: 500-26320-1

EXECUTIVE SUMMARY - Detections

Client: Environmental Information Logistics (EIL

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method
500-26320-6	IPC GW MW6				
Vinyl chloride		25	2.0	ug/L	8260B
1,1-Dichloroethene		25	5.0	ug/L	8260B
1,1-Dichloroethane		5.9	5.0	ug/L	8260B
cis-1,2-Dichloroethe	ene	180	25	ug/L	8260B
1,1,1-Trichloroethar	ne	31	5.0	ug/L	8260B
Trichloroethene		95	5.0	ug/L	8260B
Tetrachloroethene		24	5.0	ug/L	8260B
500-26320-7	IPC GW MW7				
Vinyl chloride		16	2.0	ug/L	8260B
1,1-Dichloroethene		11	5.0	ug/L	8260B
1,1-Dichloroethane		16	5.0	ug/L	8260B
cis-1,2-Dichloroethe	ene	150	25	ug/L	8260B
1,1,1-Trichloroethar	ne	5.0	5.0	ug/L	8260B
Trichloroethene		19	5.0	ug/L	8260B
500-26320-8	IPC GW MW8				
cis-1,2-Dichloroethe	ene	10	5.0	ug/L	8260B
Trichloroethene		29	5.0	ug/L	8260B

Job Number: 500-26320-1

METHOD SUMMARY

Client: Environmental Information Logistics (EIL

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds (GC/MS)	TAL CHI	SW846 8260B	
Purge and Trap	TAL CHI		SW846 5030B

Lab References:

TAL CHI = TestAmerica Chicago

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Job Number: 500-26320-1

METHOD / ANALYST SUMMARY

Client: Environmental Information Logistics (EIL Job Number: 500-26320-1

Method	Analyst	Analyst ID
SW846 8260B	Drabek, Dave J	DJD

SAMPLE SUMMARY

Client: Environmental Information Logistics (EIL Job Number: 500-26320-1

Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
IPC GW MW1	Water	06/24/2010 1022	06/25/2010 1000
IPC GW MW2	Water	06/24/2010 1044	06/25/2010 1000
IPC GW MW2	Water	06/24/2010 1044	06/25/2010 1000
IPC GW MW2	Water	06/24/2010 1044	06/25/2010 1000
IPC GW MW3	Water	06/24/2010 1133	06/25/2010 1000
IPC GW MW4	Water	06/24/2010 1220	06/25/2010 1000
IPC GW MW5	Water	06/24/2010 1323	06/25/2010 1000
IPC GW MW6	Water	06/24/2010 1249	06/25/2010 1000
IPC GW MW7	Water	06/24/2010 0930	06/25/2010 1000
IPC GW MW8	Water	06/24/2010 1426	06/25/2010 1000
IPC GW MW9	Water	06/24/2010 1442	06/25/2010 1000
IPC FB	Water	06/24/2010 1500	06/25/2010 1000
	IPC GW MW1 IPC GW MW2 IPC GW MW2 IPC GW MW2 IPC GW MW3 IPC GW MW4 IPC GW MW5 IPC GW MW6 IPC GW MW7 IPC GW MW8 IPC GW MW8 IPC GW MW8	IPC GW MW1 Water IPC GW MW2 Water IPC GW MW2 Water IPC GW MW2 Water IPC GW MW3 Water IPC GW MW4 Water IPC GW MW5 Water IPC GW MW6 Water IPC GW MW7 Water IPC GW MW7 Water IPC GW MW8 Water IPC GW MW8 Water IPC GW MW9 Water	Client Sample ID Client Matrix Sampled IPC GW MW1 Water 06/24/2010 1022 IPC GW MW2 Water 06/24/2010 1044 IPC GW MW2 Water 06/24/2010 1044 IPC GW MW3 Water 06/24/2010 1044 IPC GW MW4 Water 06/24/2010 1133 IPC GW MW5 Water 06/24/2010 1220 IPC GW MW5 Water 06/24/2010 1323 IPC GW MW6 Water 06/24/2010 1249 IPC GW MW7 Water 06/24/2010 0930 IPC GW MW8 Water 06/24/2010 1426 IPC GW MW9 Water 06/24/2010 1442

SAMPLE RESULTS

Client Sample ID: IPC GW MW1 Lab Sample ID: 500-26320-1 Date Sampled: 06/24/2010 1022 Date Received: 06/25/2010 1000

Job Number: 500-26320-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Method: 8260B		Date Analyzed: 06/28/2010 1017			
Prep Method: 5030B				/28/2010 1017	
Benzene	<5.0	ug/L	0.17	5.0	1.0
Chloromethane	<5.0	ug/L	0.24	5.0	1.0
Vinyl chloride	16	ug/L	0.20	2.0	1.0
Bromomethane	<5.0	ug/L	0.38	5.0	1.0
Chloroethane	<5.0	ug/L	0.36	5.0	1.0
1,1-Dichloroethene	11	ug/L	0.19	5.0	1.0
Carbon disulfide	<5.0	ug/L	0.55	5.0	1.0
Acetone	<20	ug/L	1.6	20	1.0
Methylene Chloride	<10	ug/L	0.67	10	1.0
trans-1,2-Dichloroethene	<5.0	ug/L	0.32	5.0	1.0
1,1-Dichloroethane	16	ug/L	0.25	5.0	1.0
Methyl Ethyl Ketone	<20	ug/L	2.3	20	1.0
Chloroform	<5.0	ug/L	0.15	5.0	1.0
1,1,1-Trichloroethane	<5.0	ug/L	0.18	5.0	1.0
Carbon tetrachloride	<5.0	ug/L	0.25	5.0	1.0
1,2-Dichloroethane	<5.0	ug/L	0.24	5.0	1.0
Trichloroethene	20	ug/L	0.24	5.0	1.0
1,2-Dichloropropane	<5.0	ug/L	0.21	5.0	1.0
Bromodichloromethane	<5.0	ug/L	0.19	5.0	1.0
cis-1,3-Dichloropropene	<5.0	ug/L	0.17	5.0	1.0
methyl isobutyl ketone	<20	ug/L	0.84	20	1.0
Toluene	<5.0	ug/L	0.19	5.0	1.0
trans-1,3-Dichloropropene	<5.0	ug/L	0.24	5.0	1.0
1,1,2-Trichloroethane	<5.0	ug/L	0.26	5.0	1.0
Tetrachloroethene	<5.0	ug/L	0.22	5.0	1.0
2-Hexanone	<20	ug/L	0.80	20	1.0
Dibromochloromethane	<5.0	ug/L	0.25	5.0	1.0
Chlorobenzene	<5.0	ug/L	0.17	5.0	1.0
Ethylbenzene	<5.0	ug/L	0.18	5.0	1.0
Styrene	<5.0	ug/L	0.15	5.0	1.0
Bromoform	<5.0	ug/L	0.42	5.0	1.0
1,1,2,2-Tetrachloroethane	<5.0	ug/L	0.29	5.0	1.0
Xylenes, Total	<5.0	ug/L	0.32	5.0	1.0
Surrogate		Acceptance Limits			
1,2-Dichloroethane-d4 (Surr)	98	%		80 - 129	
Toluene-d8 (Surr)	106	%		80 - 115	
4-Bromofluorobenzene (Surr)	96	%		80 - 115	
Dibromofluoromethane	95	%		80 - 124	

Client Sample ID: IPC GW MW1 Lab Sample ID: 500-26320-1 Date Sampled: 06/24/2010 1022 Date Received: 06/25/2010 1000

Job Number: 500-26320-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Method: 8260B Run Type: DL		Date A	nalyzed: 06/	28/2010 1105	
Prep Method: 5030B		Date P	repared: 06/	/28/2010 1105	
cis-1,2-Dichloroethene	130	ug/L	1.4	25	5.0
Surrogate			А	cceptance Limits	S
1,2-Dichloroethane-d4 (Surr)	98	%		80 - 129	
Toluene-d8 (Surr)	104	%		80 - 115	
4-Bromofluorobenzene (Surr)	90	%		80 - 115	
Dibromofluoromethane	98	%		80 - 124	

Client Sample ID: IPC GW MW2 Lab Sample ID: 500-26320-2 Date Sampled: 06/24/2010 1044 Date Received: 06/25/2010 1000

Job Number: 500-26320-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Method: 8260B		Date Analyzed: 06/28/2010 1130			
Prep Method: 5030B				/28/2010 1130	
Benzene	<5.0	ug/L	0.17	5.0	1.0
Chloromethane	<5.0	ug/L	0.24	5.0	1.0
Vinyl chloride	<2.0	ug/L	0.20	2.0	1.0
Bromomethane	<5.0	ug/L	0.38	5.0	1.0
Chloroethane	<5.0	ug/L	0.36	5.0	1.0
1,1-Dichloroethene	23	ug/L	0.19	5.0	1.0
Carbon disulfide	<5.0	ug/L	0.55	5.0	1.0
Acetone	<20	ug/L	1.6	20	1.0
Methylene Chloride	<10	ug/L	0.67	10	1.0
trans-1,2-Dichloroethene	<5.0	ug/L	0.32	5.0	1.0
1,1-Dichloroethane	<5.0	ug/L	0.25	5.0	1.0
cis-1,2-Dichloroethene	58	ug/L	0.27	5.0	1.0
Methyl Ethyl Ketone	<20	ug/L	2.3	20	1.0
Chloroform	<5.0	ug/L	0.15	5.0	1.0
1,1,1-Trichloroethane	22	ug/L	0.18	5.0	1.0
Carbon tetrachloride	<5.0	ug/L	0.25	5.0	1.0
1,2-Dichloroethane	<5.0	ug/L	0.24	5.0	1.0
1,2-Dichloropropane	<5.0	ug/L	0.21	5.0	1.0
Bromodichloromethane	<5.0	ug/L	0.19	5.0	1.0
cis-1,3-Dichloropropene	<5.0	ug/L	0.17	5.0	1.0
methyl isobutyl ketone	<20	ug/L	0.84	20	1.0
Toluene	<5.0	ug/L	0.19	5.0	1.0
trans-1,3-Dichloropropene	<5.0	ug/L	0.24	5.0	1.0
1,1,2-Trichloroethane	<5.0	ug/L	0.26	5.0	1.0
Tetrachloroethene	33	ug/L	0.22	5.0	1.0
2-Hexanone	<20	ug/L	0.80	20	1.0
Dibromochloromethane	<5.0	ug/L	0.25	5.0	1.0
Chlorobenzene	<5.0	ug/L	0.17	5.0	1.0
Ethylbenzene	<5.0	ug/L	0.18	5.0	1.0
Styrene	<5.0	ug/L	0.15	5.0	1.0
Bromoform	<5.0	ug/L	0.42	5.0	1.0
1,1,2,2-Tetrachloroethane	<5.0	ug/L	0.29	5.0	1.0
Xylenes, Total	<5.0	ug/L	0.32	5.0	1.0
Surrogate		Acceptance Limits			
1,2-Dichloroethane-d4 (Surr)	105	%		80 - 129	
Toluene-d8 (Surr)	109	%		80 - 115	
4-Bromofluorobenzene (Surr)	95	%		80 - 115	
Dibromofluoromethane	103	%		80 - 124	

Client Sample ID: IPC GW MW2 Lab Sample ID: 500-26320-2 Date Sampled: 06/24/2010 1044 Date Received: 06/25/2010 1000

Job Number: 500-26320-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Method: 8260B Run Type: DL Prep Method: 5030B			- ,	28/2010 1154 28/2010 1154	
Trichloroethene	200	ug/L	1.2	25	5.0
Surrogate			А	cceptance Limit	S
1,2-Dichloroethane-d4 (Surr)	101	%		80 - 129	
Toluene-d8 (Surr)	105	%		80 - 115	
4-Bromofluorobenzene (Surr)	92	%		80 - 115	
Dibromofluoromethane	100	%		80 - 124	

Client Sample ID: IPC GW MW3 Lab Sample ID: 500-26320-3 Date Sampled: 06/24/2010 1133 Date Received: 06/25/2010 1000

Job Number: 500-26320-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Method: 8260B		Date Analyzed: 06/28/2010 1308			
Prep Method: 5030B				/28/2010 1308	
Benzene	<5.0	ug/L	0.17	5.0	1.0
Chloromethane	<5.0	ug/L	0.24	5.0	1.0
Vinyl chloride	<2.0	ug/L	0.20	2.0	1.0
Bromomethane	<5.0	ug/L	0.38	5.0	1.0
Chloroethane	<5.0	ug/L	0.36	5.0	1.0
1,1-Dichloroethene	23	ug/L	0.19	5.0	1.0
Carbon disulfide	<5.0	ug/L	0.55	5.0	1.0
Acetone	<20	ug/L	1.6	20	1.0
Methylene Chloride	<10	ug/L	0.67	10	1.0
trans-1,2-Dichloroethene	<5.0	ug/L	0.32	5.0	1.0
1,1-Dichloroethane	5.2	ug/L	0.25	5.0	1.0
cis-1,2-Dichloroethene	56	ug/L	0.27	5.0	1.0
Methyl Ethyl Ketone	<20	ug/L	2.3	20	1.0
Chloroform	<5.0	ug/L	0.15	5.0	1.0
1,1,1-Trichloroethane	24	ug/L	0.18	5.0	1.0
Carbon tetrachloride	<5.0	ug/L	0.25	5.0	1.0
1,2-Dichloroethane	<5.0	ug/L	0.24	5.0	1.0
1,2-Dichloropropane	<5.0	ug/L	0.21	5.0	1.0
Bromodichloromethane	<5.0	ug/L	0.19	5.0	1.0
cis-1,3-Dichloropropene	<5.0	ug/L	0.17	5.0	1.0
methyl isobutyl ketone	<20	ug/L	0.84	20	1.0
Toluene	<5.0	ug/L	0.19	5.0	1.0
trans-1,3-Dichloropropene	<5.0	ug/L	0.24	5.0	1.0
1,1,2-Trichloroethane	<5.0	ug/L	0.26	5.0	1.0
Tetrachloroethene	40	ug/L	0.22	5.0	1.0
2-Hexanone	<20	ug/L	0.80	20	1.0
Dibromochloromethane	<5.0	ug/L	0.25	5.0	1.0
Chlorobenzene	<5.0	ug/L	0.17	5.0	1.0
Ethylbenzene	<5.0	ug/L	0.18	5.0	1.0
Styrene	<5.0	ug/L	0.15	5.0	1.0
Bromoform	<5.0	ug/L	0.42	5.0	1.0
1,1,2,2-Tetrachloroethane	<5.0	ug/L	0.29	5.0	1.0
Xylenes, Total	<5.0	ug/L	0.32	5.0	1.0
Surrogate		Acceptance Limits			
1,2-Dichloroethane-d4 (Surr)	97	%		80 - 129	
Toluene-d8 (Surr)	102	%		80 - 115	
4-Bromofluorobenzene (Surr)	89	%		80 - 115	
Dibromofluoromethane	98	%		80 - 124	

Client Sample ID: IPC GW MW3 Lab Sample ID: 500-26320-3 Date Sampled: 06/24/2010 1133 Date Received: 06/25/2010 1000

Job Number: 500-26320-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Method: 8260B Run Type: DL		Date A	nalyzed: 06	/28/2010 1333	
Prep Method: 5030B		Date P	repared: 06	/28/2010 1333	
Trichloroethene	210	ug/L	1.2	25	5.0
Surrogate			4	Acceptance Limits	3
1,2-Dichloroethane-d4 (Surr)	100	%		80 - 129	
Toluene-d8 (Surr)	104	%		80 - 115	
4-Bromofluorobenzene (Surr)	89	%		80 - 115	
Dibromofluoromethane	102	%		80 - 124	

Client Sample ID: IPC GW MW4 Lab Sample ID: 500-26320-4 Date Sampled: 06/24/2010 1220 Date Received: 06/25/2010 1000

Job Number: 500-26320-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Method: 8260B		Date Analyzed: 06/28/2010 1357			
Prep Method: 5030B				/28/2010 1357	
Benzene	<5.0	ug/L	0.17	5.0	1.0
Chloromethane	<5.0	ug/L	0.24	5.0	1.0
Vinyl chloride	76	ug/L	0.20	2.0	1.0
Bromomethane	<5.0	ug/L	0.38	5.0	1.0
Chloroethane	<5.0	ug/L	0.36	5.0	1.0
1,1-Dichloroethene	11	ug/L	0.19	5.0	1.0
Carbon disulfide	<5.0	ug/L	0.55	5.0	1.0
Acetone	<20	ug/L	1.6	20	1.0
Methylene Chloride	<10	ug/L	0.67	10	1.0
trans-1,2-Dichloroethene	<5.0	ug/L	0.32	5.0	1.0
1,1-Dichloroethane	20	ug/L	0.25	5.0	1.0
Methyl Ethyl Ketone	<20	ug/L	2.3	20	1.0
Chloroform	<5.0	ug/L	0.15	5.0	1.0
1,1,1-Trichloroethane	17	ug/L	0.18	5.0	1.0
Carbon tetrachloride	<5.0	ug/L	0.25	5.0	1.0
1,2-Dichloroethane	<5.0	ug/L	0.24	5.0	1.0
Trichloroethene	<5.0	ug/L	0.24	5.0	1.0
1,2-Dichloropropane	<5.0	ug/L	0.21	5.0	1.0
Bromodichloromethane	<5.0	ug/L	0.19	5.0	1.0
cis-1,3-Dichloropropene	<5.0	ug/L	0.17	5.0	1.0
methyl isobutyl ketone	<20	ug/L	0.84	20	1.0
Toluene	<5.0	ug/L	0.19	5.0	1.0
trans-1,3-Dichloropropene	<5.0	ug/L	0.24	5.0	1.0
1,1,2-Trichloroethane	<5.0	ug/L	0.26	5.0	1.0
Tetrachloroethene	<5.0	ug/L	0.22	5.0	1.0
2-Hexanone	<20	ug/L	0.80	20	1.0
Dibromochloromethane	<5.0	ug/L	0.25	5.0	1.0
Chlorobenzene	<5.0	ug/L	0.17	5.0	1.0
Ethylbenzene	<5.0	ug/L	0.18	5.0	1.0
Styrene	<5.0	ug/L	0.15	5.0	1.0
Bromoform	<5.0	ug/L	0.42	5.0	1.0
1,1,2,2-Tetrachloroethane	<5.0	ug/L	0.29	5.0	1.0
Xylenes, Total	<5.0	ug/L	0.32	5.0	1.0
Surrogate		Acceptance Limits			
1,2-Dichloroethane-d4 (Surr)	103	%		80 - 129	
Toluene-d8 (Surr)	107	%		80 - 115	
4-Bromofluorobenzene (Surr)	94	%		80 - 115	
Dibromofluoromethane	100	%		80 - 124	

Client Sample ID: IPC GW MW4 Lab Sample ID: 500-26320-4 Date Sampled: 06/24/2010 1220 Date Received: 06/25/2010 1000

Job Number: 500-26320-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Method: 8260B Run Type: DL		Date A	nalyzed: 06/2	8/2010 1421	
Prep Method: 5030B		Date P	repared: 06/2	8/2010 1421	
cis-1,2-Dichloroethene	150	ug/L	1.4	25	5.0
Surrogate			Acceptance Limits		
1,2-Dichloroethane-d4 (Surr)	103	%		80 - 129	
Toluene-d8 (Surr)	104	%	80 - 115		
4-Bromofluorobenzene (Surr)	91	%	% 80 - 115		
Dibromofluoromethane	101	%		80 - 124	

Client Sample ID: IPC GW MW5 Lab Sample ID: 500-26320-5 Date Sampled: 06/24/2010 1323 Date Received: 06/25/2010 1000

Job Number: 500-26320-1

Client Matrix: Water

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Method: 8260B		Date Analyzed: 06/28/2010 1445			
Prep Method: 5030B		Date P	repared: 06	/28/2010 1445	
Benzene	<5.0	ug/L	0.17	5.0	1.0
Chloromethane	<5.0	ug/L	0.24	5.0	1.0
Vinyl chloride	5.7	ug/L	0.20	2.0	1.0
Bromomethane	<5.0	ug/L	0.38	5.0	1.0
Chloroethane	<5.0	ug/L	0.36	5.0	1.0
1,1-Dichloroethene	23	ug/L	0.19	5.0	1.0
Carbon disulfide	<5.0	ug/L	0.55	5.0	1.0
Acetone	<20	ug/L	1.6	20	1.0
Methylene Chloride	<10	ug/L	0.67	10	1.0
trans-1,2-Dichloroethene	<5.0	ug/L	0.32	5.0	1.0
1,1-Dichloroethane	5.5	ug/L	0.25	5.0	1.0
Methyl Ethyl Ketone	<20	ug/L	2.3	20	1.0
Chloroform	<5.0	ug/L	0.15	5.0	1.0
1,1,1-Trichloroethane	27	ug/L	0.18	5.0	1.0
Carbon tetrachloride	<5.0	ug/L	0.25	5.0	1.0
1,2-Dichloroethane	<5.0	ug/L	0.24	5.0	1.0
1,2-Dichloropropane	<5.0	ug/L	0.21	5.0	1.0
Bromodichloromethane	<5.0	ug/L	0.19	5.0	1.0
cis-1,3-Dichloropropene	<5.0	ug/L	0.17	5.0	1.0
methyl isobutyl ketone	<20	ug/L	0.84	20	1.0
Toluene	<5.0	ug/L	0.19	5.0	1.0
trans-1,3-Dichloropropene	<5.0	ug/L	0.24	5.0	1.0
1,1,2-Trichloroethane	<5.0	ug/L	0.26	5.0	1.0
Tetrachloroethene	37	ug/L	0.22	5.0	1.0
2-Hexanone	<20	ug/L	0.80	20	1.0
Dibromochloromethane	<5.0	ug/L	0.25	5.0	1.0
Chlorobenzene	<5.0	ug/L	0.17	5.0	1.0
Ethylbenzene	<5.0	ug/L	0.18	5.0	1.0
Styrene	<5.0	ug/L	0.15	5.0	1.0
Bromoform	<5.0	ug/L	0.42	5.0	1.0
1,1,2,2-Tetrachloroethane	<5.0	ug/L	0.29	5.0	1.0
Xylenes, Total	<5.0	ug/L	0.32	5.0	1.0
Surrogate			Acceptance Limits		
1,2-Dichloroethane-d4 (Surr)	97	%		80 - 129	
Toluene-d8 (Surr)	102	%		80 - 115	
4-Bromofluorobenzene (Surr)	90	%		80 - 115	
Dibromofluoromethane	98	%		80 - 124	

Method: 8260B Run Type: DL Date Analyzed: 06/28/2010 1510

Client Sample ID: IPC GW MW5 Lab Sample ID: 500-26320-5 Date Sampled: 06/24/2010 1323 Date Received: 06/25/2010 1000

Job Number: 500-26320-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Prep Method: 5030B		Date P	repared: 06	6/28/2010 1510	
cis-1,2-Dichloroethene	120	ug/L	1.4	25	5.0
Trichloroethene	160	ug/L	1.2	25	5.0
Surrogate			,	Acceptance Limits	3
1,2-Dichloroethane-d4 (Surr)	99	%		80 - 129	
Toluene-d8 (Surr)	104	%		80 - 115	
4-Bromofluorobenzene (Surr)	90	%		80 - 115	
Dibromofluoromethane	101	%		80 - 124	

Client Sample ID: IPC GW MW6 Lab Sample ID: 500-26320-6 Date Sampled: 06/24/2010 1249 Date Received: 06/25/2010 1000

Job Number: 500-26320-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Method: 8260B		Date A	nalyzed: 06	/28/2010 1533	
Prep Method: 5030B				/28/2010 1533	
Benzene	<5.0	ug/L	0.17	5.0	1.0
Chloromethane	<5.0	ug/L	0.24	5.0	1.0
Vinyl chloride	25	ug/L	0.20	2.0	1.0
Bromomethane	<5.0	ug/L	0.38	5.0	1.0
Chloroethane	<5.0	ug/L	0.36	5.0	1.0
1,1-Dichloroethene	25	ug/L	0.19	5.0	1.0
Carbon disulfide	<5.0	ug/L	0.55	5.0	1.0
Acetone	<20	ug/L	1.6	20	1.0
Methylene Chloride	<10	ug/L	0.67	10	1.0
trans-1,2-Dichloroethene	<5.0	ug/L	0.32	5.0	1.0
1,1-Dichloroethane	5.9	ug/L	0.25	5.0	1.0
Methyl Ethyl Ketone	<20	ug/L	2.3	20	1.0
Chloroform	<5.0	ug/L	0.15	5.0	1.0
1,1,1-Trichloroethane	31	ug/L	0.18	5.0	1.0
Carbon tetrachloride	<5.0	ug/L	0.25	5.0	1.0
1,2-Dichloroethane	<5.0	ug/L	0.24	5.0	1.0
Trichloroethene	95	ug/L	0.24	5.0	1.0
1,2-Dichloropropane	<5.0	ug/L	0.21	5.0	1.0
Bromodichloromethane	<5.0	ug/L	0.19	5.0	1.0
cis-1,3-Dichloropropene	<5.0	ug/L	0.17	5.0	1.0
methyl isobutyl ketone	<20	ug/L	0.84	20	1.0
Toluene	<5.0	ug/L	0.19	5.0	1.0
trans-1,3-Dichloropropene	<5.0	ug/L	0.24	5.0	1.0
1,1,2-Trichloroethane	<5.0	ug/L	0.26	5.0	1.0
Tetrachloroethene	24	ug/L	0.22	5.0	1.0
2-Hexanone	<20	ug/L	0.80	20	1.0
Dibromochloromethane	<5.0	ug/L	0.25	5.0	1.0
Chlorobenzene	<5.0	ug/L	0.17	5.0	1.0
Ethylbenzene	<5.0	ug/L	0.18	5.0	1.0
Styrene	<5.0	ug/L	0.15	5.0	1.0
Bromoform	<5.0	ug/L	0.42	5.0	1.0
1,1,2,2-Tetrachloroethane	<5.0	ug/L	0.29	5.0	1.0
Xylenes, Total	<5.0	ug/L	0.32	5.0	1.0
Surrogate			Α	cceptance Limits	
1,2-Dichloroethane-d4 (Surr)	102	%		80 - 129	
Toluene-d8 (Surr)	105	%		80 - 115	
4-Bromofluorobenzene (Surr)	93	%		80 - 115	
Dibromofluoromethane	105	%		80 - 124	

Client Sample ID: IPC GW MW6 Lab Sample ID: 500-26320-6 Date Sampled: 06/24/2010 1249 Date Received: 06/25/2010 1000

Job Number: 500-26320-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Method: 8260B		Date A	nalyzed: 00	6/28/2010 1557	
Prep Method: 5030B		Date P	repared: 00	6/28/2010 1557	
cis-1,2-Dichloroethene	180	ug/L	1.4	25	5.0
Surrogate				Acceptance Limits	3
1,2-Dichloroethane-d4 (Surr)	104	%		80 - 129	
Toluene-d8 (Surr)	107	%		80 - 115	
4-Bromofluorobenzene (Surr)	94	%		80 - 115	
Dibromofluoromethane	108	%		80 - 124	

Client Sample ID: IPC GW MW7 Lab Sample ID: 500-26320-7 Date Sampled: 06/24/2010 0930 Date Received: 06/25/2010 1000

Job Number: 500-26320-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Method: 8260B		Date A	nalyzed: 06	/28/2010 1622	
Prep Method: 5030B				/28/2010 1622	
Benzene	<5.0	ug/L	0.17	5.0	1.0
Chloromethane	<5.0	ug/L	0.24	5.0	1.0
Vinyl chloride	16	ug/L	0.20	2.0	1.0
Bromomethane	<5.0	ug/L	0.38	5.0	1.0
Chloroethane	<5.0	ug/L	0.36	5.0	1.0
1,1-Dichloroethene	11	ug/L	0.19	5.0	1.0
Carbon disulfide	<5.0	ug/L	0.55	5.0	1.0
Acetone	<20	ug/L	1.6	20	1.0
Methylene Chloride	<10	ug/L	0.67	10	1.0
trans-1,2-Dichloroethene	<5.0	ug/L	0.32	5.0	1.0
1,1-Dichloroethane	16	ug/L	0.25	5.0	1.0
Methyl Ethyl Ketone	<20	ug/L	2.3	20	1.0
Chloroform	<5.0	ug/L	0.15	5.0	1.0
1,1,1-Trichloroethane	5.0	ug/L	0.18	5.0	1.0
Carbon tetrachloride	<5.0	ug/L	0.25	5.0	1.0
1,2-Dichloroethane	<5.0	ug/L	0.24	5.0	1.0
Trichloroethene	19	ug/L	0.24	5.0	1.0
1,2-Dichloropropane	<5.0	ug/L	0.21	5.0	1.0
Bromodichloromethane	<5.0	ug/L	0.19	5.0	1.0
cis-1,3-Dichloropropene	<5.0	ug/L	0.17	5.0	1.0
methyl isobutyl ketone	<20	ug/L	0.84	20	1.0
Toluene	<5.0	ug/L	0.19	5.0	1.0
trans-1,3-Dichloropropene	<5.0	ug/L	0.24	5.0	1.0
1,1,2-Trichloroethane	<5.0	ug/L	0.26	5.0	1.0
Tetrachloroethene	<5.0	ug/L	0.22	5.0	1.0
2-Hexanone	<20	ug/L	0.80	20	1.0
Dibromochloromethane	<5.0	ug/L	0.25	5.0	1.0
Chlorobenzene	<5.0	ug/L	0.17	5.0	1.0
Ethylbenzene	<5.0	ug/L	0.18	5.0	1.0
Styrene	<5.0	ug/L	0.15	5.0	1.0
Bromoform	<5.0	ug/L	0.42	5.0	1.0
1,1,2,2-Tetrachloroethane	<5.0	ug/L	0.29	5.0	1.0
Xylenes, Total	<5.0	ug/L	0.32	5.0	1.0
Surrogate			A	cceptance Limits	
1,2-Dichloroethane-d4 (Surr)	104	%		80 - 129	
Toluene-d8 (Surr)	108	%		80 - 115	
4-Bromofluorobenzene (Surr)	99	%		80 - 115	
Dibromofluoromethane	108	%		80 - 124	

Client Sample ID: IPC GW MW7 Lab Sample ID: 500-26320-7 Date Sampled: 06/24/2010 0930 Date Received: 06/25/2010 1000

Job Number: 500-26320-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Method: 8260B		Date A	nalyzed: 06	6/28/2010 1646	
Prep Method: 5030B		Date P	repared: 06	6/28/2010 1646	
cis-1,2-Dichloroethene	150	ug/L	1.4	25	5.0
Surrogate				Acceptance Limits	S
1,2-Dichloroethane-d4 (Surr)	106	%		80 - 129	
Toluene-d8 (Surr)	109	%		80 - 115	
4-Bromofluorobenzene (Surr)	95	%		80 - 115	
Dibromofluoromethane	112	%		80 - 124	

Client Sample ID: IPC GW MW8 Lab Sample ID: 500-26320-8 Date Sampled: 06/24/2010 1426 Date Received: 06/25/2010 1000

Job Number: 500-26320-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Method: 8260B		Date A	nalyzed: 06	/28/2010 1711	
Prep Method: 5030B		Date P	repared: 06	/28/2010 1711	
Benzene	<5.0	ug/L	0.17	5.0	1.0
Chloromethane	<5.0	ug/L	0.24	5.0	1.0
Vinyl chloride	<2.0	ug/L	0.20	2.0	1.0
Bromomethane	<5.0	ug/L	0.38	5.0	1.0
Chloroethane	<5.0	ug/L	0.36	5.0	1.0
1,1-Dichloroethene	<5.0	ug/L	0.19	5.0	1.0
Carbon disulfide	<5.0	ug/L	0.55	5.0	1.0
Acetone	<20	ug/L	1.6	20	1.0
Methylene Chloride	<10	ug/L	0.67	10	1.0
trans-1,2-Dichloroethene	<5.0	ug/L	0.32	5.0	1.0
1,1-Dichloroethane	<5.0	ug/L	0.25	5.0	1.0
cis-1,2-Dichloroethene	10	ug/L	0.27	5.0	1.0
Methyl Ethyl Ketone	<20	ug/L	2.3	20	1.0
Chloroform	<5.0	ug/L	0.15	5.0	1.0
1,1,1-Trichloroethane	<5.0	ug/L	0.18	5.0	1.0
Carbon tetrachloride	<5.0	ug/L	0.25	5.0	1.0
1,2-Dichloroethane	<5.0	ug/L	0.24	5.0	1.0
Trichloroethene	29	ug/L	0.24	5.0	1.0
1,2-Dichloropropane	<5.0	ug/L	0.21	5.0	1.0
Bromodichloromethane	<5.0	ug/L	0.19	5.0	1.0
cis-1,3-Dichloropropene	<5.0	ug/L	0.17	5.0	1.0
methyl isobutyl ketone	<20	ug/L	0.84	20	1.0
Toluene	<5.0	ug/L	0.19	5.0	1.0
trans-1,3-Dichloropropene	<5.0	ug/L	0.24	5.0	1.0
1,1,2-Trichloroethane	<5.0	ug/L	0.26	5.0	1.0
Tetrachloroethene	<5.0	ug/L	0.22	5.0	1.0
2-Hexanone	<20	ug/L	0.80	20	1.0
Dibromochloromethane	<5.0	ug/L	0.25	5.0	1.0
Chlorobenzene	<5.0	ug/L	0.17	5.0	1.0
Ethylbenzene	<5.0	ug/L	0.18	5.0	1.0
Styrene	<5.0	ug/L	0.15	5.0	1.0
Bromoform	<5.0	ug/L	0.42	5.0	1.0
1,1,2,2-Tetrachloroethane	<5.0	ug/L	0.29	5.0	1.0
Xylenes, Total	<5.0	ug/L	0.32	5.0	1.0
Surrogate		Acceptance Limits			
1,2-Dichloroethane-d4 (Surr)	100	%		80 - 129	
Toluene-d8 (Surr)	105	%		80 - 115	
4-Bromofluorobenzene (Surr)	89	%		80 - 115	

Client Sample ID: IPC GW MW8 Lab Sample ID: 500-26320-8 Date Sampled: 06/24/2010 1426 Date Received: 06/25/2010 1000

Job Number: 500-26320-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Surrogate			Acc	ceptance Limits	3
Dibromofluoromethane	103	%		80 - 124	

Client Sample ID: IPC GW MW9 Lab Sample ID: 500-26320-9 Date Sampled: 06/24/2010 1442
Date Received: 06/25/2010 1000

Job Number: 500-26320-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Method: 8260B		Date A	nalyzed: 06	/28/2010 1735	
Prep Method: 5030B		Date P	repared: 06	/28/2010 1735	
Benzene	<5.0	ug/L	0.17	5.0	1.0
Chloromethane	<5.0	ug/L	0.24	5.0	1.0
Vinyl chloride	<2.0	ug/L	0.20	2.0	1.0
Bromomethane	<5.0	ug/L	0.38	5.0	1.0
Chloroethane	<5.0	ug/L	0.36	5.0	1.0
1,1-Dichloroethene	<5.0	ug/L	0.19	5.0	1.0
Carbon disulfide	<5.0	ug/L	0.55	5.0	1.0
Acetone	<20	ug/L	1.6	20	1.0
Methylene Chloride	<10	ug/L	0.67	10	1.0
trans-1,2-Dichloroethene	<5.0	ug/L	0.32	5.0	1.0
1,1-Dichloroethane	<5.0	ug/L	0.25	5.0	1.0
cis-1,2-Dichloroethene	<5.0	ug/L	0.27	5.0	1.0
Methyl Ethyl Ketone	<20	ug/L	2.3	20	1.0
Chloroform	<5.0	ug/L	0.15	5.0	1.0
1,1,1-Trichloroethane	<5.0	ug/L	0.18	5.0	1.0
Carbon tetrachloride	<5.0	ug/L	0.25	5.0	1.0
1,2-Dichloroethane	<5.0	ug/L	0.24	5.0	1.0
Trichloroethene	<5.0	ug/L	0.24	5.0	1.0
1,2-Dichloropropane	<5.0	ug/L	0.21	5.0	1.0
Bromodichloromethane	<5.0	ug/L	0.19	5.0	1.0
cis-1,3-Dichloropropene	<5.0	ug/L	0.17	5.0	1.0
methyl isobutyl ketone	<20	ug/L	0.84	20	1.0
Toluene	<5.0	ug/L	0.19	5.0	1.0
trans-1,3-Dichloropropene	<5.0	ug/L	0.24	5.0	1.0
1,1,2-Trichloroethane	<5.0	ug/L	0.26	5.0	1.0
Tetrachloroethene	<5.0	ug/L	0.22	5.0	1.0
2-Hexanone	<20	ug/L	0.80	20	1.0
Dibromochloromethane	<5.0	ug/L	0.25	5.0	1.0
Chlorobenzene	<5.0	ug/L	0.17	5.0	1.0
Ethylbenzene	<5.0	ug/L	0.18	5.0	1.0
Styrene	<5.0	ug/L	0.15	5.0	1.0
Bromoform	<5.0	ug/L	0.42	5.0	1.0
1,1,2,2-Tetrachloroethane	<5.0	ug/L	0.29	5.0	1.0
Xylenes, Total	<5.0	ug/L	0.32	5.0	1.0
Surrogate		Acceptance Limits			
1,2-Dichloroethane-d4 (Surr)	104	%		80 - 129	
Toluene-d8 (Surr)	109	%		80 - 115	
4-Bromofluorobenzene (Surr)	95	%		80 - 115	

Client Sample ID: IPC GW MW9 Lab Sample ID: 500-26320-9 Date Sampled: 06/24/2010 1442 Date Received: 06/25/2010 1000

Job Number: 500-26320-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Surrogate			Acc	ceptance Limit	S
Dibromofluoromethane	113	%		80 - 124	

Client Sample ID: IPC FB Lab Sample ID: 500-26320-10 Date Sampled: 06/24/2010 1500 Date Received: 06/25/2010 1000

Job Number: 500-26320-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Method: 8260B		Date A	nalyzed: 06	6/28/2010 1800	
Prep Method: 5030B		Date P	repared: 06	6/28/2010 1800	
Benzene	<5.0	ug/L	0.17	5.0	1.0
Chloromethane	<5.0	ug/L	0.24	5.0	1.0
Vinyl chloride	<2.0	ug/L	0.20	2.0	1.0
Bromomethane	<5.0	ug/L	0.38	5.0	1.0
Chloroethane	<5.0	ug/L	0.36	5.0	1.0
1,1-Dichloroethene	<5.0	ug/L	0.19	5.0	1.0
Carbon disulfide	<5.0	ug/L	0.55	5.0	1.0
Acetone	<20	ug/L	1.6	20	1.0
Methylene Chloride	<10	ug/L	0.67	10	1.0
trans-1,2-Dichloroethene	<5.0	ug/L	0.32	5.0	1.0
1,1-Dichloroethane	<5.0	ug/L	0.25	5.0	1.0
cis-1,2-Dichloroethene	<5.0	ug/L	0.27	5.0	1.0
Methyl Ethyl Ketone	<20	ug/L	2.3	20	1.0
Chloroform	<5.0	ug/L	0.15	5.0	1.0
1,1,1-Trichloroethane	<5.0	ug/L	0.18	5.0	1.0
Carbon tetrachloride	<5.0	ug/L	0.25	5.0	1.0
1,2-Dichloroethane	<5.0	ug/L	0.24	5.0	1.0
Trichloroethene	<5.0	ug/L	0.24	5.0	1.0
1,2-Dichloropropane	<5.0	ug/L	0.21	5.0	1.0
Bromodichloromethane	<5.0	ug/L	0.19	5.0	1.0
cis-1,3-Dichloropropene	<5.0	ug/L	0.17	5.0	1.0
methyl isobutyl ketone	<20	ug/L	0.84	20	1.0
Toluene	<5.0	ug/L	0.19	5.0	1.0
trans-1,3-Dichloropropene	<5.0	ug/L	0.24	5.0	1.0
1,1,2-Trichloroethane	<5.0	ug/L	0.26	5.0	1.0
Tetrachloroethene	<5.0	ug/L	0.22	5.0	1.0
2-Hexanone	<20	ug/L	0.80	20	1.0
Dibromochloromethane	<5.0	ug/L	0.25	5.0	1.0
Chlorobenzene	<5.0	ug/L	0.17	5.0	1.0
Ethylbenzene	<5.0	ug/L	0.18	5.0	1.0
Styrene	<5.0	ug/L	0.15	5.0	1.0
Bromoform	<5.0	ug/L	0.42	5.0	1.0
1,1,2,2-Tetrachloroethane	<5.0	ug/L	0.29	5.0	1.0
Xylenes, Total	<5.0	ug/L	0.32	5.0	1.0
Surrogate		Acceptance Limits			
1,2-Dichloroethane-d4 (Surr)	105	%		80 - 129	
Toluene-d8 (Surr)	106	%		80 - 115	
4-Bromofluorobenzene (Surr)	94	%		80 - 115	

Client Sample ID: IPC FB Lab Sample ID: 500-26320-10 Date Sampled: 06/24/2010 1500 Date Received: 06/25/2010 1000

Job Number: 500-26320-1

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Surrogate			Ac	ceptance Limit	S
Dibromofluoromethane	109	%		80 - 124	

DATA REPORTING QUALIFIERS

Client: Environmental Information Logistics (EIL Job Number: 500-26320-1

Lab Section	Qualifier	Description
GC/MS VOA		
	F	MS or MSD exceeds the control limits
	4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable.

QUALITY CONTROL RESULTS

Client: Environmental Information Logistics (EIL Job Number: 500-26320-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:500-	88631				
LCS 500-88631/5	Lab Control Sample	T	Water	8260B	
MB 500-88631/4	Method Blank	T	Water	8260B	
500-26320-1	IPC GW MW1	T	Water	8260B	
500-26320-1DL	IPC GW MW1	Т	Water	8260B	
500-26320-2	IPC GW MW2	Т	Water	8260B	
500-26320-2DL	IPC GW MW2	Т	Water	8260B	
500-26320-2MS	Matrix Spike	Т	Water	8260B	
500-26320-2MSD	Matrix Spike Duplicate	Т	Water	8260B	
500-26320-3	IPC GW MW3	Т	Water	8260B	
500-26320-3DL	IPC GW MW3	Т	Water	8260B	
500-26320-4	IPC GW MW4	Т	Water	8260B	
500-26320-4DL	IPC GW MW4	Т	Water	8260B	
500-26320-5	IPC GW MW5	Т	Water	8260B	
500-26320-5DL	IPC GW MW5	Т	Water	8260B	
500-26320-6	IPC GW MW6	Т	Water	8260B	
500-26320-7	IPC GW MW7	Т	Water	8260B	
500-26320-8	IPC GW MW8	Т	Water	8260B	
500-26320-9	IPC GW MW9	Т	Water	8260B	
500-26320-10	IPC FB	Т	Water	8260B	

Report Basis

T = Total

Client: Environmental Information Logistics (EIL Job Number: 500-26320-1

Surrogate Recovery Report

8260B Volatile Organic Compounds (GC/MS)

Client Matrix: Water

		DCA	TOL	BFB	DBFM
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec	%Rec
500-26320-1	IPC GW MW1	98	106	96	95
500-26320-1 DL	IPC GW MW1 DL	98	104	90	98
500-26320-2	IPC GW MW2	105	109	95	103
500-26320-2 DL	IPC GW MW2 DL	101	105	92	100
500-26320-3	IPC GW MW3	97	102	89	98
500-26320-3 DL	IPC GW MW3 DL	100	104	89	102
500-26320-4	IPC GW MW4	103	107	94	100
500-26320-4 DL	IPC GW MW4 DL	103	104	91	101
500-26320-5	IPC GW MW5	97	102	90	98
500-26320-5 DL	IPC GW MW5 DL	99	104	90	101
500-26320-6	IPC GW MW6	102	105	93	105
500-26320-6	IPC GW MW6	104	107	94	108
500-26320-7	IPC GW MW7	104	108	99	108
500-26320-7	IPC GW MW7	106	109	95	112
500-26320-8	IPC GW MW8	100	105	89	103
500-26320-9	IPC GW MW9	104	109	95	113
500-26320-10	IPC FB	105	106	94	109
MB 500-88631/4		95	101	91	96
LCS 500-88631/5		98	103	97	99
500-26320-2 MS	IPC GW MW2 MS	96	102	95	97
500-26320-2 MSD	IPC GW MW2 MSD	103	106	100	101

Surrogate	Acceptance Limits
DCA = 1,2-Dichloroethane-d4 (Surr)	80-129
TOL = Toluene-d8 (Surr)	80-115
BFB = 4-Bromofluorobenzene (Surr)	80-115
DBFM = Dibromofluoromethane	80-124

06/30/2010

Client: Environmental Information Logistics (EIL Job Number: 500-26320-1

Method Blank - Batch: 500-88631 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 500-88631/4 Analysis Batch: 500-88631 Instrument ID: CMS02

Client Matrix: Water Prep Batch: N/A Lab File ID: 2M0628.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 06/28/2010 0920 Final Weight/Volume: 10 mL Date Prepared: 06/28/2010 0920

Analyte	Result	Qual	MDL	RL
Benzene	<5.0		0.17	5.0
Chloromethane	<5.0		0.24	5.0
Vinyl chloride	<2.0		0.20	2.0
Bromomethane	<5.0		0.38	5.0
Chloroethane	<5.0		0.36	5.0
1,1-Dichloroethene	<5.0		0.19	5.0
Carbon disulfide	<5.0		0.55	5.0
Acetone	<20		1.6	20
Methylene Chloride	<10		0.67	10
trans-1,2-Dichloroethene	<5.0		0.32	5.0
1,1-Dichloroethane	<5.0		0.25	5.0
cis-1,2-Dichloroethene	<5.0		0.27	5.0
Methyl Ethyl Ketone	<20		2.3	20
Chloroform	<5.0		0.15	5.0
1,1,1-Trichloroethane	<5.0		0.18	5.0
Carbon tetrachloride	<5.0		0.25	5.0
1,2-Dichloroethane	<5.0		0.24	5.0
Trichloroethene	<5.0		0.24	5.0
1,2-Dichloropropane	<5.0		0.21	5.0
Bromodichloromethane	<5.0		0.19	5.0
cis-1,3-Dichloropropene	<5.0		0.17	5.0
methyl isobutyl ketone	<20		0.84	20
Toluene	<5.0		0.19	5.0
trans-1,3-Dichloropropene	<5.0		0.24	5.0
1,1,2-Trichloroethane	<5.0		0.26	5.0
Tetrachloroethene	<5.0		0.22	5.0
2-Hexanone	<20		0.80	20
Dibromochloromethane	<5.0		0.25	5.0
Chlorobenzene	<5.0		0.17	5.0
Ethylbenzene	<5.0		0.18	5.0
Styrene	<5.0		0.15	5.0
Bromoform	<5.0		0.42	5.0
1,1,2,2-Tetrachloroethane	<5.0		0.29	5.0
Xylenes, Total	<5.0		0.32	5.0
Surrogate	% Rec	Acce	eptance Limits	
1,2-Dichloroethane-d4 (Surr)	95		80 - 129	
Toluene-d8 (Surr)	101		80 - 115	
4-Bromofluorobenzene (Surr)	91		80 - 115	
Dibromofluoromethane	96		80 - 124	

Client: Environmental Information Logistics (EIL Job Number: 500-26320-1

Lab Control Sample - Batch: 500-88631

Method: 8260B Preparation: 5030B

Lab Sample ID: LCS 500-88631/5

Client Matrix: Water Dilution: 1.0

Date Analyzed: 06/28/2010 0944 Date Prepared: 06/28/2010 0944 Analysis Batch: 500-88631

Prep Batch: N/A

Units: ug/L

Instrument ID: CMS02 Lab File ID: 2S0628.D Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual	
Benzene	25.0	24.8	99	73 - 117		
Chloromethane	25.0	15.7	63	51 - 151		
Vinyl chloride	25.0	17.6	71	56 - 128		
Bromomethane	25.0	29.4	117	35 - 181		
Chloroethane	25.0	26.7	107	52 - 150		
1,1-Dichloroethene	25.0	22.0	88	55 - 127		
Carbon disulfide	25.0	16.3	65	38 - 123		
Acetone	25.0	25.3	101	42 - 149		
Methylene Chloride	25.0	25.1	101	62 - 127		
trans-1,2-Dichloroethene	25.0	24.0	96	67 - 125		
1,1-Dichloroethane	25.0	23.0	92	67 - 122		
cis-1,2-Dichloroethene	25.0	23.2	93	65 - 115		
Methyl Ethyl Ketone	25.0	21.3	85	52 - 148		
Chloroform	25.0	24.4	98	74 - 121		
1,1,1-Trichloroethane	25.0	25.1	100	76 - 127		
Carbon tetrachloride	25.0	26.8	107	66 - 138		
1,2-Dichloroethane	25.0	25.6	103	71 - 124		
Trichloroethene	25.0	26.9	108	77 - 118		
1,2-Dichloropropane	25.0	25.2	101	75 - 120		
Bromodichloromethane	25.0	26.6	106	79 - 124		
cis-1,3-Dichloropropene	26.9	25.7	96	66 - 122		
methyl isobutyl ketone	25.0	23.3	93	58 - 134		
Toluene	25.0	24.8	99	76 - 119		
trans-1,3-Dichloropropene	24.3	23.5	97	66 - 110		
1,1,2-Trichloroethane	25.0	24.9	99	70 - 127		
Tetrachloroethene	25.0	27.3	109	76 - 116		
2-Hexanone	25.0	23.8	95	54 - 140		
Dibromochloromethane	25.0	26.9	108	68 - 122		
Chlorobenzene	25.0	25.6	102	78 - 113		
Ethylbenzene	25.0	25.8	103	80 - 116		
Styrene	25.0	26.2	105	80 - 120		
Bromoform	25.0	27.1	108	59 - 122		
1,1,2,2-Tetrachloroethane	25.0	25.3	101	70 - 123		
Xylenes, Total	75.0	76.5	102	79 - 120		
Surrogate	% R	ec	Acc	ceptance Limits		
1,2-Dichloroethane-d4 (Surr)	98			80 - 129		
Toluene-d8 (Surr)	10		80 - 115			
4-Bromofluorobenzene (Surr)	97			80 - 115		
Dibromofluoromethane	99		80 - 124			

Job Number: 500-26320-1 Client: Environmental Information Logistics (EIL

Matrix Spike/ Method: 8260B Matrix Spike Duplicate Recovery Report - Batch: 500-88631 Preparation: 5030B

06/28/2010 1219

Date Prepared:

MS Lab Sample ID: 500-26320-2 Analysis Batch: 500-88631 Instrument ID: CMS02

Client Matrix: Prep Batch: N/A Water Lab File ID: 6320-02S.D

Initial Weight/Volume: 10 mL Dilution: 1.0 Date Analyzed: 06/28/2010 1219 Final Weight/Volume: 10 mL

MSD Lab Sample ID: 500-26320-2 Analysis Batch: 500-88631 Instrument ID: CMS02 Client Matrix: Water Prep Batch: N/A Lab File ID: 6320-02T.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 06/28/2010 1243 Final Weight/Volume: 10 mL Date Prepared: 06/28/2010 1243

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Benzene	76	84	73 - 117	10	20		
Chloromethane	56	52	51 - 151	8	20		
Vinyl chloride	72	64	56 - 128	11	20		
Bromomethane	120	103	35 - 181	15	20		
Chloroethane	106	96	52 - 150	10	20		
1,1-Dichloroethene	60	62	55 - 127	1	20		
Carbon disulfide	50	54	38 - 123	8	20		
Acetone	66	70	42 - 149	7	20		
Methylene Chloride	73	83	62 - 127	12	20		
trans-1,2-Dichloroethene	73	82	67 - 125	10	20		
1,1-Dichloroethane	69	76	67 - 122	8	20		
cis-1,2-Dichloroethene	57	59	65 - 115	1	20	F	F
Methyl Ethyl Ketone	60	63	52 - 148	5	20		
Chloroform	76	84	74 - 121	10	20		
1,1,1-Trichloroethane	70	76	76 - 127	4	20	F	
Carbon tetrachloride	83	91	66 - 138	10	20		
1,2-Dichloroethane	78	87	71 - 124	10	20		
Trichloroethene	14	26	77 - 118	2	20	4	4
1,2-Dichloropropane	75	84	75 - 120	12	20		
Bromodichloromethane	80	89	79 - 124	11	20		
cis-1,3-Dichloropropene	74	81	66 - 122	9	20		
methyl isobutyl ketone	70	77	58 - 134	9	20		
Toluene	78	85	76 - 119	8	20		
trans-1,3-Dichloropropene	73	78	66 - 110	7	20		
1,1,2-Trichloroethane	76	84	70 - 127	10	20		
Tetrachloroethene	72	82	76 - 116	5	20	F	
2-Hexanone	70	77	54 - 140	9	20		
Dibromochloromethane	82	91	68 - 122	10	20		
Chlorobenzene	80	88	78 - 113	10	20		
Ethylbenzene	80	86	80 - 116	8	20		

Client: Environmental Information Logistics (EIL Job Number: 500-26320-1

Matrix Spike/ Method: 8260B
Matrix Spike Duplicate Recovery Report - Batch: 500-88631 Preparation: 5030B

MS Lab Sample ID: 500-26320-2 Analysis Batch: 500-88631 Instrument ID: CMS02

Client Matrix: Water Prep Batch: N/A Lab File ID: 6320-02S.D

Date Prepared:

06/28/2010 1219

Dilution: 1.0 Initial Weight/Volume: 10 mL Date Analyzed: 06/28/2010 1219 Final Weight/Volume: 10 mL

MSD Lab Sample ID: 500-26320-2 Analysis Batch: 500-88631 Instrument ID: CMS02 Client Matrix: Water Prep Batch: N/A Lab File ID: 6320-02T.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 06/28/2010 1243 Final Weight/Volume: 10 mL

Date Prepared: 06/28/2010 1243

% Rec. MS MSD **RPD** MS Qual MSD Qual Analyte Limit **RPD Limit** 80 - 120 Styrene 79 87 9 20 F Bromoform 79 91 59 - 122 14 20 1,1,2,2-Tetrachloroethane 77 84 70 - 123 9 20 F 79 - 120 Xylenes, Total 78 87 10 20 Surrogate MS % Rec MSD % Rec Acceptance Limits 80 - 129 1,2-Dichloroethane-d4 (Surr) 96 103 80 - 115 Toluene-d8 (Surr) 102 106 4-Bromofluorobenzene (Surr) 95 100 80 - 115 Dibromofluoromethane 97 80 - 124 101

<u>TestAmerica</u>	1 -	coptions	•		(optional) Bill To Contact: Company:				Chain of Custody Record			
THE LEADER IN ENVIRONMENTAL TESTING	Company:	- /		· · · · · ·					Laso Ji	ли н		
2417 Bond Street, University Park, IL 60484	Address:			I				—	Chain	of Custody Number:		
Phone: 708.534.5200 Fax: 708.534.5211	Address:	23/2	G-7:7/					— I		_		
		<u>COC 0</u>	8216	1					Page	bf		
	Fax:								Temp	erature °C of Coolor:	2.1	
Sort C C C C C C C C C C C C C C C C C C C	E-Mail:	Preservative	* 1	PO#/Referer	nce#	1		.,	· · · · · · · · · · · · · · · · · · ·		Preservative Key	
IPC/ETZ Client Project #		Preservative									I. HCL, Cool to 4° 2. H2SQ4, Cool to 4°	
Toter state Pollation Constrol S.	le	Parameter								[;	3. HNO3, Cool to 4º 4. NaOH, Cool to 4º	
roject Location/State Lab Project #	, , , , , , , , , , , , , , , , , , ,										5. NaOH/Zn, Cool to 4º 6. NaHSO4 7. Cool to 4º	
emplo Brina Malupen Lab PM										1 +	B. None B. Other	
의 Sample ID	Sampling	# of Containers Matrx			ļ							
ii ≥ (Sample ID	Date Time					 		ļ			Comments	
•	-24-10 1022	+ · — - · · · · · · · · · · · · · · · · ·										
2 X IFC GWMWI	1044	9			<u> </u>					<u> </u>		
3 IPC GW MW3	113>	3										
4 IPC GW MWY	1330	3										
5 IR GW MWS	1323	3										
6 IPC GW MWG	1249	3								•		
7 TRC GW MW7	920	3										
& IPC GW MW8	1426	3										
9 [PC GW MW9	1442			"								
ID IR FB	1500	3								-		
- Furnaround Time Required (Business Days)	-	Sample Dispon	səl	7	· 			•				
1 Day2 Days5 Days7 Days10 Days15 Days15 Days15 Days16 Days16 Days16 Days16 Days17 Days18 Days	JaysOther	Return	to Client	Disposal by Lab		hive for	_ Months	, ,	be assessed if sample	es are retained longer tha	an 1 month)	
	4-10 15	Firme	Received By		ТА		C/2:		Time 10.00	Lab Courier		
Relinquished By Company Date		THE PERSON NAMED IN COLUMN NAM	Received By	j [~]	ompany		Date		inine	Shipped	Fx	
Relinquished By Company Date		lime	Received By	C	ompany		Date		Time	Hand Delivered	·	
Matrix Key WW – Wastewater SE - Sediment N – Water SD – Soil S – Soil L – Sludge WI – Wips SL – Sludge DW – Drinking Water DL – Oil C Other A – Air						Lab Comments	:					
			Page	37 of 38		l			resolved some some and a second		06 /30 1/22/25/0 ₁₂₀₉₎	

Login Sample Receipt Check List

Client: Environmental Information Logistics (EIL

List Source: TestAmerica Chicago

Job Number: 500-26320-1

Login Number: 26320 Creator: Lunt, Jeff T List Number: 1

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	2.1
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Is the Field Sampler's name present on COC?	True	
Sample Preservation Verified	True	

ANALYTICAL REPORT

Job Number: 500-26593-1

Job Description: Interstate Pollution Control Site

For:

Environmental Information Logistics (EIL 975 Burton Street
Unit 10
Beloit, WI 53511

Attention: Ms. Mary Pearson

Rill Khym

Approved for release Richard C Wright Project Manager II 7/20/2010 3:56 PM

Richard C Wright
Project Manager II
richard.wright@testamericainc.com
07/20/2010

These test results meet all the requirements of NELAC for accredited parameters.

The Lab Certification ID#: TestAmerica Chicago 100201

All questions regarding this test report should be directed to the TestAmerica Project Manager whose signature appears on this report. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable.

TestAmerica Laboratories, Inc.

TestAmerica Chicago 2417 Bond Street, University Park, IL 60484 Tel (708) 534-5200 Fax (708) 534-5211 www.testamericainc.com

Job Narrative 500-26593-1

Comments

No additional comments.

Receipt All samples were received in good condition within temperature requirements.

GC/MS VOA

No analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: Environmental Information Logistics (EIL

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method	Method		
500-26593-1	MW1							
1,1-Dichloroethane		17	1.0	ug/L	8260B			

Job Number: 500-26593-1

METHOD SUMMARY

Client: Environmental Information Logistics (EIL

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds (GC/MS)	TAL CHI	SW846 8260B	
Purge and Trap	TAL CHI		SW846 5030B

Lab References:

TAL CHI = TestAmerica Chicago

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Job Number: 500-26593-1

METHOD / ANALYST SUMMARY

Client: Environmental Information Logistics (EIL Job Number: 500-26593-1

Method	Analyst	Analyst ID
SW846 8260B	Drabek, Dave J	DJD

SAMPLE SUMMARY

Client: Environmental Information Logistics (EIL Job Number: 500-26593-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
500-26593-1	MW1	Water	07/09/2010 0808	07/10/2010 0915
500-26593-1MS	MW1	Water	07/09/2010 0808	07/10/2010 0915
500-26593-1MSD	MW1	Water	07/09/2010 0808	07/10/2010 0915

SAMPLE RESULTS

Ms. Mary Pearson Environmental Information Logistics (EIL 975 Burton Street Unit 10 Beloit, WI 53511

Client Sample ID: MW1 Lab Sample ID: 500-2

500-26593-1

Date Sampled: 07/09/2010 0808 Date Received: 07/10/2010 0915

Job Number: 500-26593-1

Client Matrix: Water

Analyte	Result/Qualifier	Unit	MDL	RL	Dilution
Method: 8260B		Date A	nalyzed: 07/1	5/2010 0018	
Prep Method: 5030B		Date P	repared: 07/1	5/2010 0018	
1,1-Dichloroethane	17	ug/L	0.25	1.0	1.0
Surrogate			Acc	ceptance Limit	S
1,2-Dichloroethane-d4 (Surr)	101	%		80 - 129	
Toluene-d8 (Surr)	102	%		80 - 115	
4-Bromofluorobenzene (Surr)	96	%		80 - 115	
Dibromofluoromethane	100	%		80 - 124	

QUALITY CONTROL RESULTS

Quality Control Results

Client: Environmental Information Logistics (EIL Job Number: 500-26593-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS VOA	Cilcin Gampio 12		CHOIR MALLIX	oureu	. rop Duton
Analysis Batch:500-89	9591				
LCS 500-89591/28	Lab Control Sample	Т	Water	8260B	
MB 500-89591/8	Method Blank	Т	Water	8260B	
500-26593-1	MW1	Т	Water	8260B	
500-26593-1MS	Matrix Spike	Т	Water	8260B	
500-26593-1MSD	Matrix Spike Duplicate	Т	Water	8260B	

Report Basis

T = Total

Client: Environmental Information Logistics (EIL Job Number: 500-26593-1

Surrogate Recovery Report

8260B Volatile Organic Compounds (GC/MS)

Client Matrix: Water

		DCA	TOL	BFB	DBFM	
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec	%Rec	
500-26593-1	MW1	101	102	96	100	
MB 500-89591/8		98	99	90	97	
LCS 500-89591/28		102	102	97	106	
500-26593-1 MS	MW1 MS	100	102	101	103	
500-26593-1 MSD	MW1 MSD	100	101	97	98	

Surrogate	Acceptance Limits
DCA = 1,2-Dichloroethane-d4 (Surr)	80-129
TOL = Toluene-d8 (Surr)	80-115
BFB = 4-Bromofluorobenzene (Surr)	80-115
DRFM = Dibromofluoromethane	80-124

Quality Control Results

Job Number: 500-26593-1 Client: Environmental Information Logistics (EIL

Method Blank - Batch: 500-89591 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 500-89591/8 Analysis Batch: 500-89591 Instrument ID: CMS02 Client Matrix: Prep Batch: N/A Water Lab File ID: 2M0714B.D Units: ug/L Initial Weight/Volume: 10 mL Dilution: 1.0

Date Analyzed: 07/14/2010 2330 Final Weight/Volume: 10 mL Date Prepared: 07/14/2010 2330

Analyte	Result	Qual	MDL	RL	
1,1-Dichloroethane	<1.0		0.25	1.0	
Surrogate	% Rec		Acceptance Limits		
1,2-Dichloroethane-d4 (Surr)	98		80 - 129		
Toluene-d8 (Surr)	99		80 - 115		
4-Bromofluorobenzene (Surr)	90		80 - 115		
Dibromofluoromethane	97		80 - 124		

Method: 8260B Lab Control Sample - Batch: 500-89591 Preparation: 5030B

Lab Sample ID: LCS 500-89591/28 Analysis Batch: 500-89591 Instrument ID: CMS02

Dibromofluoromethane

Client Matrix: Water Prep Batch: N/A Lab File ID: 2T0714A.D Dilution: Units: ug/L 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 07/15/2010 0735 Final Weight/Volume: 10 mL Date Prepared: 07/15/2010 0735

Spike Amount % Rec. Analyte Result Limit Qual 25.0 67 - 122 1,1-Dichloroethane 22.3 89 Surrogate % Rec Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 102 80 - 129 Toluene-d8 (Surr) 102 80 - 115 4-Bromofluorobenzene (Surr) 97 80 - 115 80 - 124

106

Quality Control Results

80 - 124

Client: Environmental Information Logistics (EIL Job Number: 500-26593-1

Matrix Spike/ Method: 8260B
Matrix Spike Duplicate Recovery Report - Batch: 500-89591 Preparation: 5030B

MS Lab Sample ID: 500-26593-1 Analysis Batch: 500-89591 Instrument ID: CMS02

Client Matrix: Water Prep Batch: N/A Lab File ID: 6593-01S.D Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 07/15/2010 0107 Final Weight/Volume: 10 mL

Date Prepared: 07/15/2010 0107

MSD Lab Sample ID: 500-26593-1 Analysis Batch: 500-89591 Instrument ID: CMS02

Client Matrix: Water Prep Batch: N/A Lab File ID: 6593-01T.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 07/15/2010 0132 Final Weight/Volume: 10 mL

Date Prepared: 07/15/2010 0132

% Rec. MS MSD Limit **RPD RPD Limit** MS Qual MSD Qual Analyte 1,1-Dichloroethane 67 - 122 97 80 12 20 Surrogate MS % Rec MSD % Rec Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 100 100 80 - 129 Toluene-d8 (Surr) 102 101 80 - 115 4-Bromofluorobenzene (Surr) 101 97 80 - 115

103

98

Dibromofluoromethane

THE	TestAmerica THE LEADER IN ENVIRONMENTAL TESTING 2417 Bond Street, University Park, IL 60484 Phone: 708.534.5200 Fax: 708.534.5211 Phone: Fex:					ary T.L) ·		Bill To Contact: Company: Address: Phone:	(optional)			Cha		of Custody Record 500-2659 (Custody Number:		
				Fax E-M						Fax: PO#/Refere						Tempera	ature °C of Cooler:	2.3
Project Nam Project Loss Sampler	ation/State	FC. WILL Millagen	Client Project #) C-M	all.		meter	Dichlo oftene	, 100 100 100 100 100 100 100 100 100 100	PUMINERE	ncerr							Preservative Key 1. HCL, Cool to 4° 2. H2SO4, Cool to 4° 3. HNO3, Cool to 4° 4. NaOH, Cool to 4° 5. NaOH/Zn, Cool to 4° 6. NaHSO4. 7. Cool to 4° 8. None
Lab ID	1			San Date	apling Time	* of Containers	Natric											Comments
<u> </u>	< MU	υi		7-9-10	904	100	اريه	X					· ·	· ·				
	-			<u> </u>							<u> </u>		<u> </u>			<u> </u>		
					-	-	-					•						
																 		
+	+-	and annual and a state of the s											<u> </u>	 				
	<u></u>			1		<u> </u>	-			1	-							
	1					'		,.		····	 	1						
-														 	·			
Tumaround	d Time Require y 2 Days I Due Date	ed (Business Days)	ays 10 Days	15 Days	Other	Samp	le Dispos	al to Client	Dis	posal by Lab	An	chive for	Months	(A fee ma	ý be essessed if	semples	ere retained longer th	an 1 month)
Ballnouishex	1By	Company	ر ت س	0aa ~9∙70		Time		Received By	Kly	. (1777		Darte / je) (1=	Time €	15	Lab Courier	
Refinquished	By	Сотрапу		Date		Time		Received By	U	(company		Date	•	Teno		Shipped	Fx
Relinquisher	d By	Company		Date		Time		Received By		(Саттрадту	<u> </u>	Date		Time		Hand Delivered	
WW + Water S - Soil St - Sludg MS - Miso OL - Oil A - Air	stewater Je	Matrix Key SE – Sediment SO – Soil L – Leachate WI – Wipe DW – Orinking W O – Other	Client Com	nents				<u> </u>				Lab Comment	\$:					
,-s - , s ai			<u> </u>					Pa	ge 14	of 15		1 .		· · · · ·				7720AZ42Q4biQ1209)

Login Sample Receipt Check List

Client: Environmental Information Logistics (EIL

List Source: TestAmerica Chicago

Job Number: 500-26593-1

Login Number: 26593 Creator: Lunt, Jeff T List Number: 1

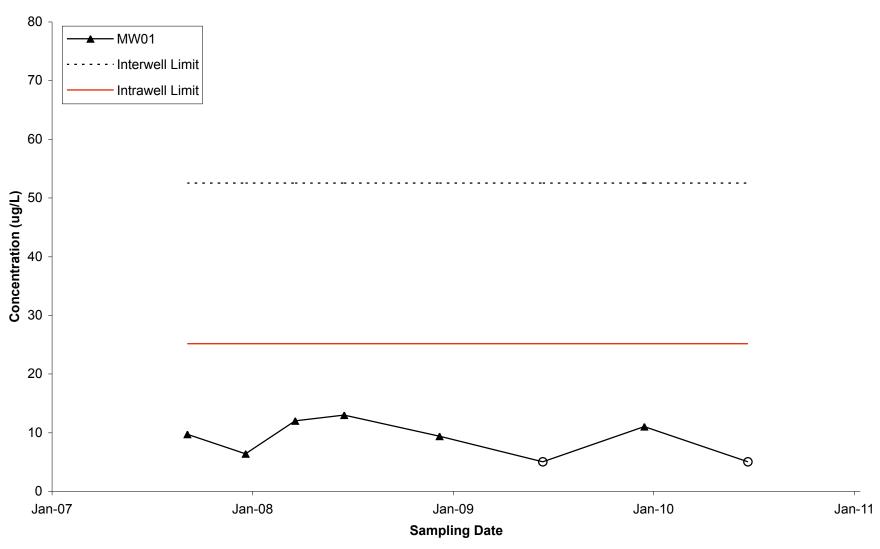
Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	2.3
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

December 2008 Through July 2010 Data Summary IPC/Roto-Rooter Site

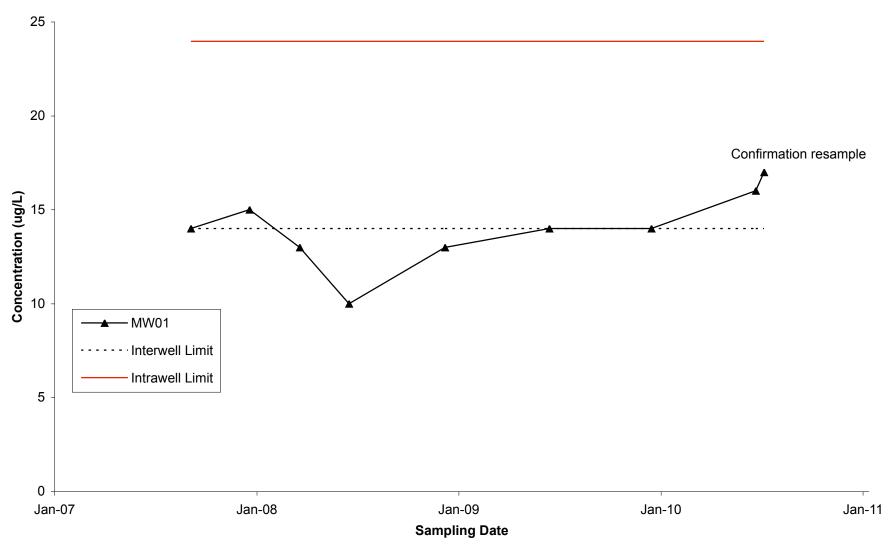
				Intomical!	Introvendi	Dec-	Dec-08 Mar-09		Jun-	09	Sep-	-09	Dec-	-09	Jun-	-10	Jul-10			
				Interwell Upper	Intrawell Upper															STEP-Defined
				Limit	Limit															Statistical
Well	Location	Parameter	Units	(95%)	(99%)	Result	Oual	Result	Oual	Result	Oual	Result	Oual	Result	Oual	Result	Oual	Result	Oual	Exceedance?
MW1		1,1,1-Trichloroethane	ug/L	52.5	25.1	9.4	Quui	NA	- Zum	5	U	NA	Quui	11	Z uu.	5	U	NA	Quar	No No
MW1	υ	1.1-Dichloroethane	ug/L	14	24.0	13		NA		14		NA		14		16		17		Yes
MW1	Downgradient	1.1-Dichloroethene	ug/L	32.9	21.1	14		NA		9.5		NA		12		11		NA		No
MW1	8	cis-1,2-Dichloroethene	ug/L	250	295	230		NA		170		NA		160		130		NA		No
MW1	Downgradient	Tetrachloroethene	ug/L	45.8	5.6	5	U	NA		5	U	NA		5	U	5	U	NA		No
MW1	Downgradient	Trichloroethene	ug/L	340	324	45		NA		20		NA		52		20		NA		No
MW1	Downgradient	Vinyl Chloride	ug/L	48	10.4	7.3		NA		6.9		NA		10		16		NA		No
MW2	Downgradient	1,1,1-Trichloroethane	ug/L	52.5	39.3	21		NA		15		NA		25		22		NA		No
MW2	Downgradient	1,1-Dichloroethane	ug/L	14	5.4	5	U	NA		5	U	NA		5	U	5	U	NA		No
MW2		1,1-Dichloroethene	ug/L	32.9	30.6	17		NA		13		NA		22		23		NA		No
MW2	Downgradient	cis-1,2-Dichloroethene	ug/L	250	131	52		NA		37		NA		92		58		NA		No
MW2	Downgradient	Tetrachloroethene	ug/L	45.8	23.1	23		NA		17		NA		34		33		NA		No
MW2	Downgradient	Trichloroethene	ug/L	340	293	230		NA		150		NA		210		200		NA		No
MW2	Downgradient	Vinyl Chloride	ug/L	48	10.0	4.5		NA		2	U	NA		2	U	2	U	NA		No
MW3	Upgradient	1,1,1-Trichloroethane	ug/L	52.5	45.5	22		NA		21		NA		27		24		NA		No
MW3	Upgradient	1,1-Dichloroethane	ug/L	14	11.0	5	U	NA		11		NA		5	U	5.2		NA		No
MW3	Upgradient	1,1-Dichloroethene	ug/L	32.9	36.3	17		NA		17		NA		21		23		NA		No
MW3	Upgradient	cis-1,2-Dichloroethene	ug/L	250	126	50		NA		74		NA		58		56		NA		No
MW3	Upgradient	Tetrachloroethene	ug/L	45.8	39.7	25		NA		28		NA		38		40		NA		Yes
MW3	Upgradient	Trichloroethene	ug/L	340	310	230		NA		170		NA		240		210		NA		No
MW3	Upgradient	Vinyl Chloride	ug/L	48	2.0	2	U	NA		2	U	NA		2	U	2	U	NA		No
MW4	Downgradient	1,1,1-Trichloroethane	ug/L	52.5	47.2	21		NA		17		NA		18		17		NA		No
MW4	Downgradient	1,1-Dichloroethane	ug/L	14	69.9	13		NA		27		NA		22		20		NA		No
MW4	Downgradient	1,1-Dichloroethene	ug/L	32.9	33.0	14		NA		11		NA		9.8		11		NA		No
MW4	Downgradient	cis-1,2-Dichloroethene	ug/L	250	461	190		NA		180		NA		160		150		NA		No
MW4	Downgradient	Tetrachloroethene	ug/L	45.8	5.0	5	U	NA		5	U	NA		5	U	5	U	NA		No
MW4	Downgradient	Trichloroethene	ug/L	340	5.0	5	U	NA		5	U	NA		5	U	5	U	NA		No
MW4	Downgradient	Vinyl Chloride	ug/L	48	137	65		NA		74		NA		67		76		NA		No
MW5	Upgradient	1,1,1-Trichloroethane	ug/L	52.5	78.5	35		NA		32		NA		39		27		NA		No
MW5	Upgradient	1,1-Dichloroethane	ug/L	14	25.8	8.8		NA		6		NA		6.6		5.5		NA		No
MW5	Upgradient	1,1-Dichloroethene	ug/L	32.9	34.0	27		NA		23		NA		26		23		NA		No
MW5	Upgradient	cis-1,2-Dichloroethene	ug/L	250	519	250		NA		180		NA		140		120		NA		No
MW5	Upgradient	Tetrachloroethene	ug/L	45.8	75.7	29		NA		34		NA		42		37		NA		No
MW5	Upgradient	Trichloroethene	ug/L	340	390	200		NA		180		NA		230		160		NA		No
MW5	Upgradient	Vinyl Chloride	ug/L	48	15.0	7.7		NA		8.8		NA		7.2		5.7		NA		No

Page 1 of 2 REVISED LIMITS

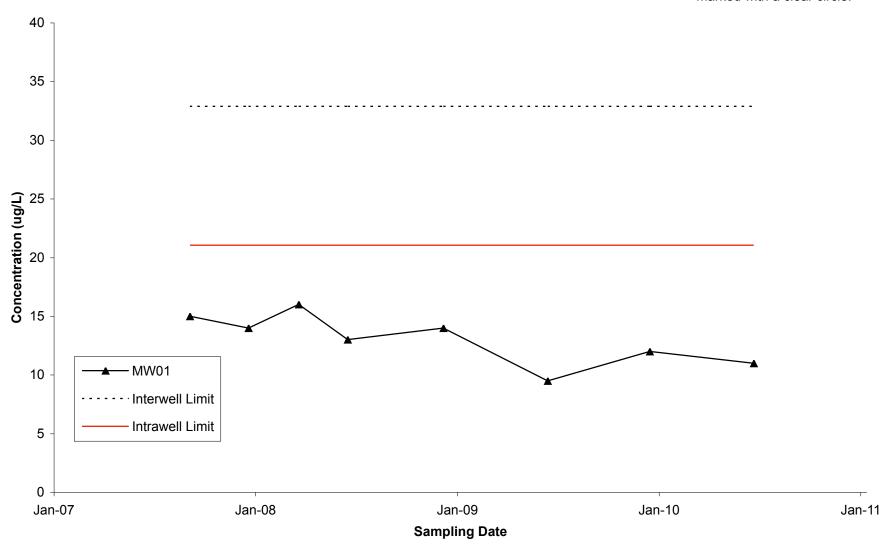
December 2008 Through July 2010 Data Summary IPC/Roto-Rooter Site

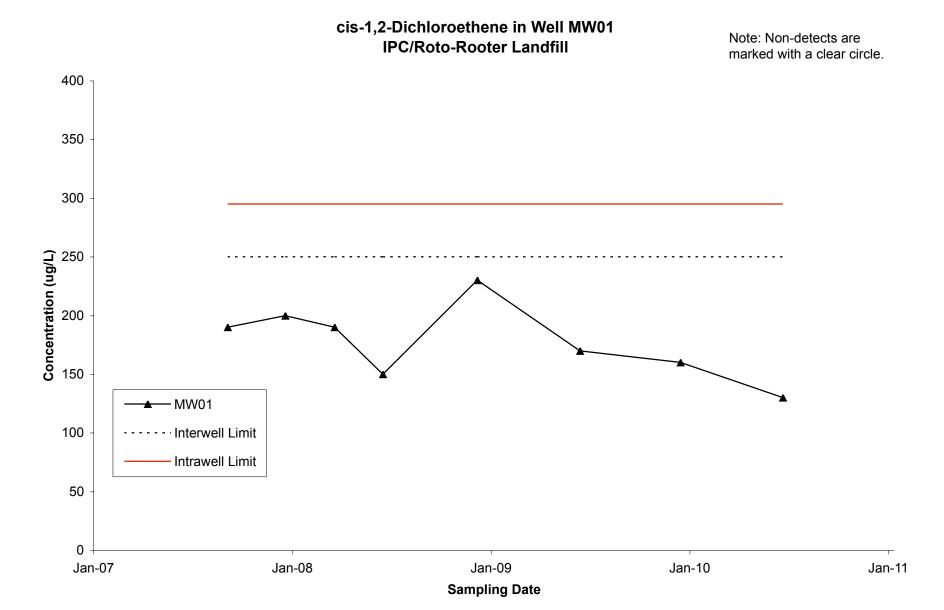

				Interwell	Intrawell	Dec-08		Mar-09		Jun-09		Sep-09		Dec-09		Jun-10		Jul-10		
Well	Location	Parameter	Units	Upper Limit (95%)	Upper Limit (99%)	Result	Qual	STEP-Defined Statistical Exceedance?												
MW6	Upgradient	1,1,1-Trichloroethane	ug/L	52.5	71.3	22		NA		31	Ì	NA	`	37	Ì	31		NA		No
MW6	Upgradient	1,1-Dichloroethane	ug/L	14	42.1	6.8		NA		5	U	NA		6.7		5.9		NA		No
MW6	Upgradient	1,1-Dichloroethene	ug/L	32.9	36.5	15		NA		22		NA		24		25		NA		No
MW6	Upgradient	cis-1,2-Dichloroethene	ug/L	250	352	200		NA		210		NA		190		180		NA		No
MW6	Upgradient	Tetrachloroethene	ug/L	45.8	47.6	6.1		NA		15		NA		5	U	24		NA		No
MW6	Upgradient	Trichloroethene	ug/L	340	220	32		NA		73		NA		150		95		NA		No
MW6	Upgradient	Vinyl Chloride	ug/L	48	104	24		NA		25		NA		18		25		NA		No
MW8	Downgradient	1,1,1-Trichloroethane	ug/L	52.5	30.2	NA		5	U	5	U	6.1		11		5	U	NA		No
MW8	Downgradient	1,1-Dichloroethane	ug/L	14	34.0	NA		5	U	5	U	6.8		12		5	U	NA		No
MW8	Downgradient	1,1-Dichloroethene	ug/L	32.9	14.1	NA		5	U	5	U	5.1		7.1		5	U	NA		No
MW8	Downgradient	cis-1,2-Dichloroethene	ug/L	250	78.2	NA		11		5	U	18		29		10		NA		No
MW8	Downgradient	Tetrachloroethene	ug/L	45.8	5.0	NA		5	U	5	U	5	U	5	U	5	U	NA		No
MW8	Downgradient	Trichloroethene	ug/L	340	171	NA		27		14		36		75		29		NA		No
MW8	Downgradient	Vinyl Chloride	ug/L	48	2.0	NA		2	U	2	U	2	U	2	U	2	U	NA		No
MW9	Downgradient	1,1,1-Trichloroethane	ug/L	52.5	5.0	NA		5	U	5	U	5	U	5	U	5	U	NA		No
MW9	Downgradient	1,1-Dichloroethane	ug/L	14	5.0	NA		5	U	5	U	5	U	5	U	5	U	NA		No
MW9	Downgradient	1,1-Dichloroethene	ug/L	32.9	5.0	NA		5	U	5	U	5	U	5	U	5	U	NA		No
MW9	Downgradient	cis-1,2-Dichloroethene	ug/L	250	5.0	NA		5	U	5	U	5	U	5	U	5	U	NA		No
MW9	Downgradient	Tetrachloroethene	ug/L	45.8	5.0	NA		5	U	5	U	5	U	5	U	5	U	NA		No
MW9		Trichloroethene	ug/L	340	5.0	NA		5	U	5	U	5	U	5	U	5	U	NA		No
MW9	Downgradient	Vinyl Chloride	ug/L	48	2.0	NA		2	U	2	U	2	U	2	U	2	U	NA		No

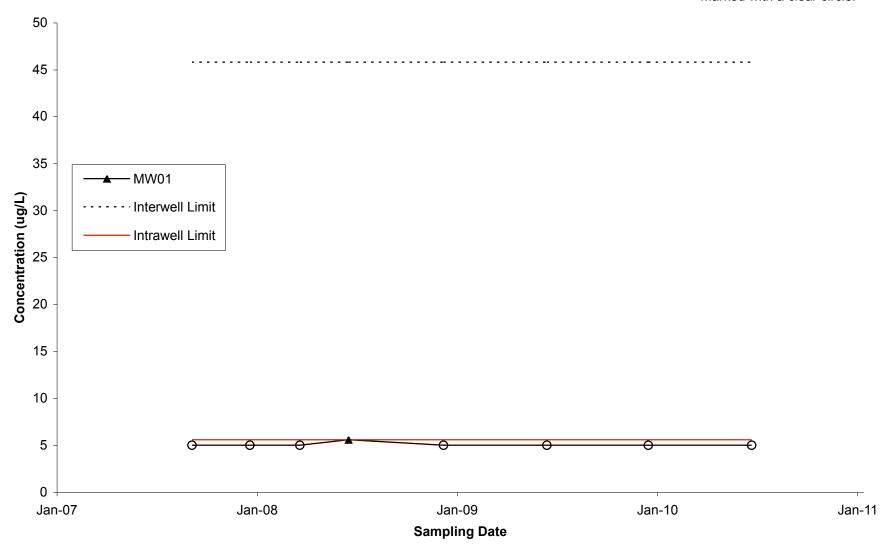
All data reported in ug/L. NA - Not Applicable

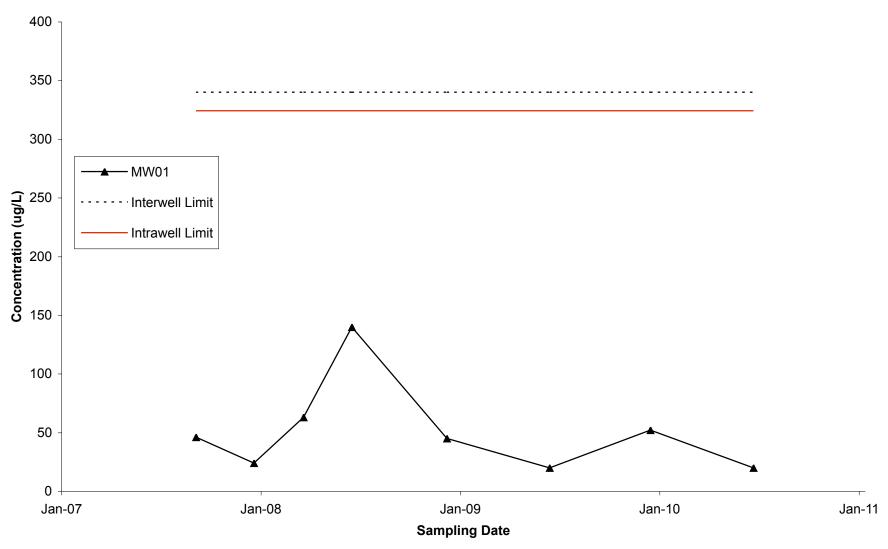

Interwell and Intrawell limits calculated using background data collected: Sep. 2007, Dec. 2007, Mar. 2008, and Jun. 2008. Except for the following:
Interwell limits for 1,1-dichloroethane; tetrachloroethene; and trichloroethene collected: Dec. 2007, Jun. 2008, Dec. 2008, and Jun. 2009
Intrawell limits for 1,1-dichloroethane (MW3); tetrachloroethene and trichloroethene (MW6) collected: Dec. 2007, Jun. 2008, Dec. 2008, and Jun. 2009.
Intrawell limits for all parameters (MW8 and MW9) collected: Mar. 2009, Jun. 2009, Sep. 2009, and Dec. 2009.

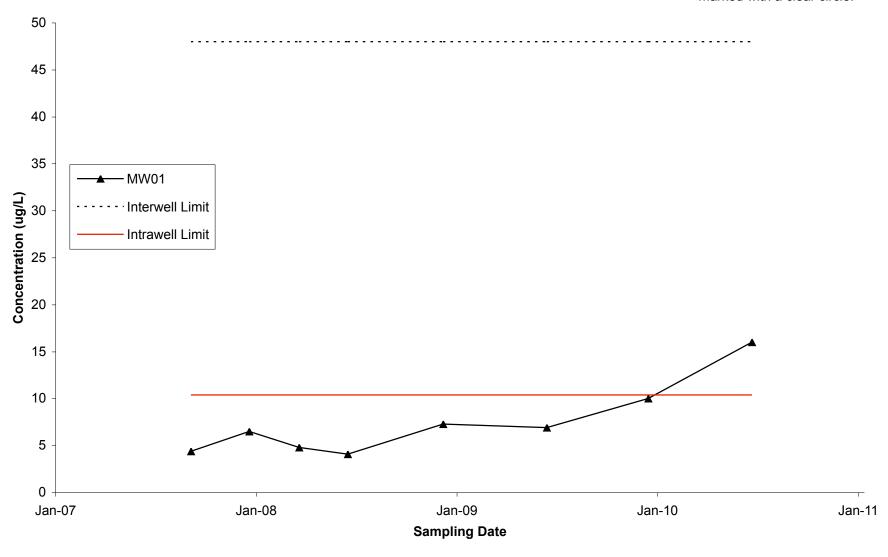
REVISED LIMITS Page 2 of 2

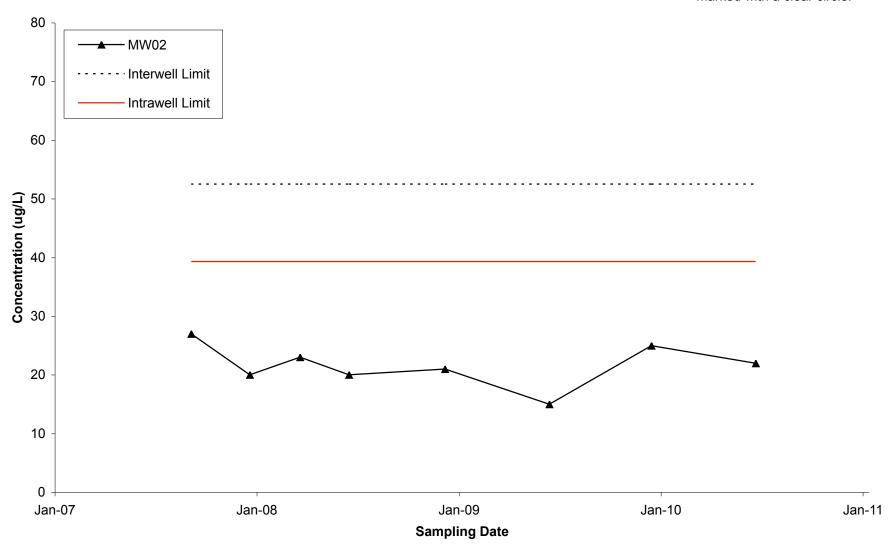


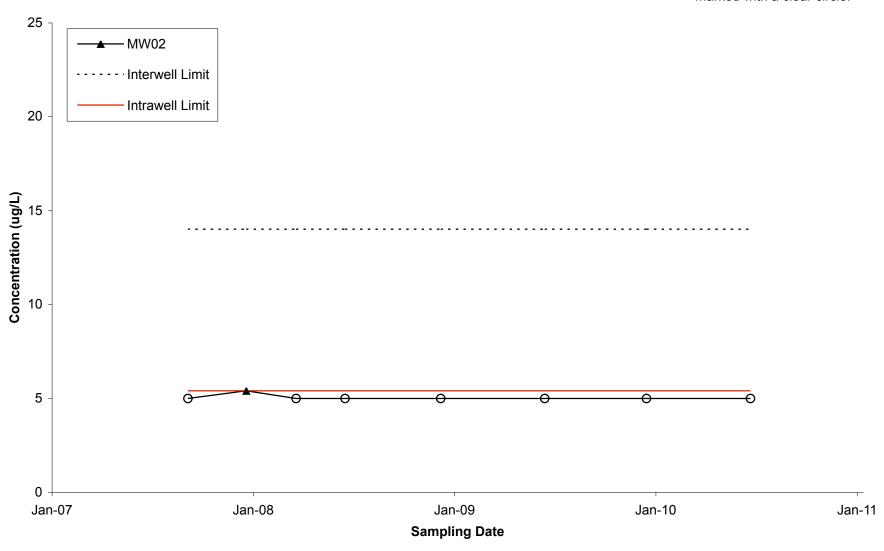


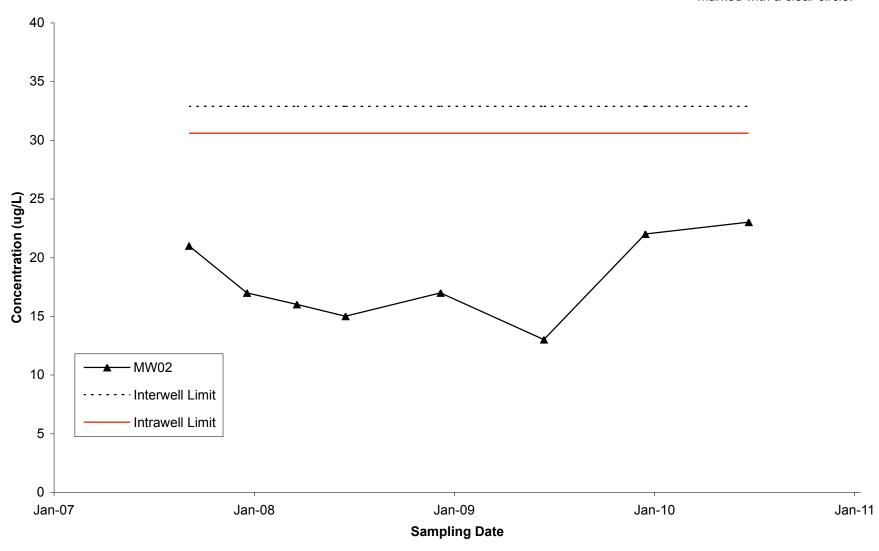


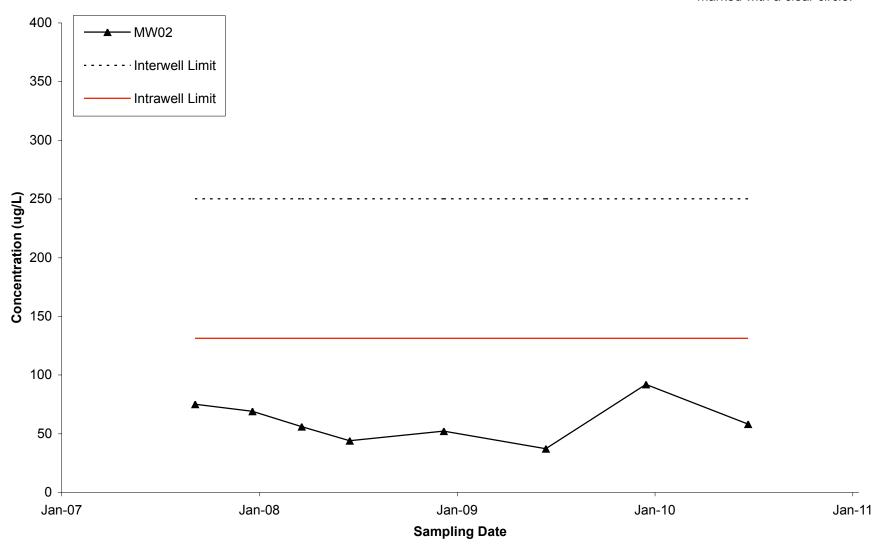


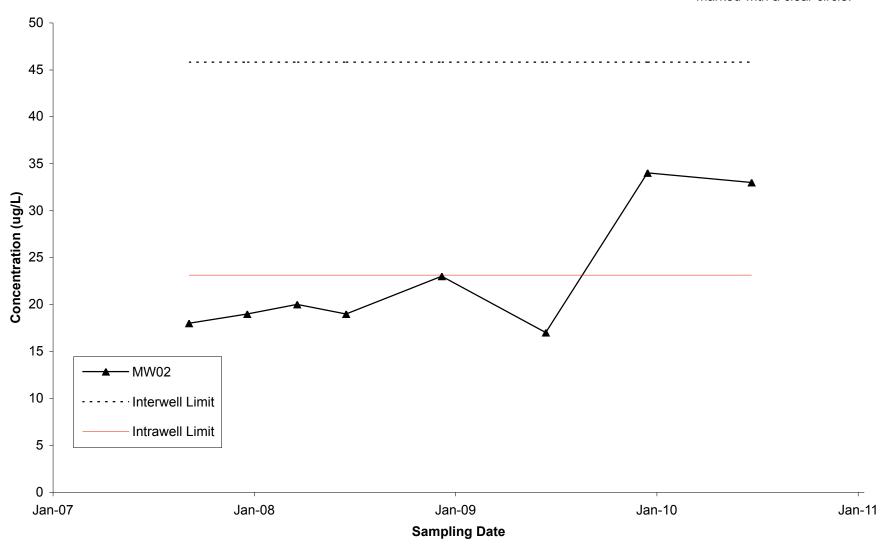


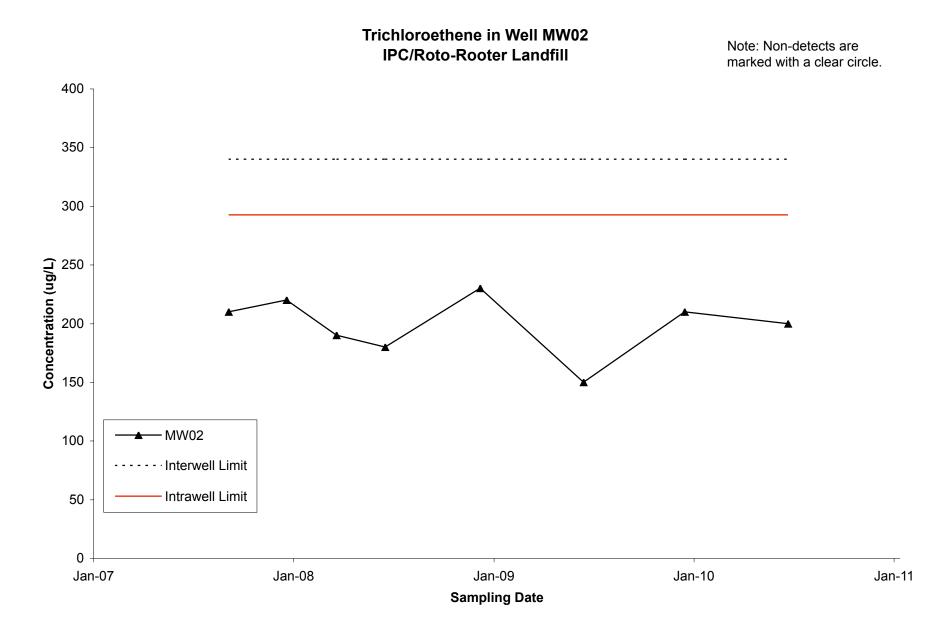


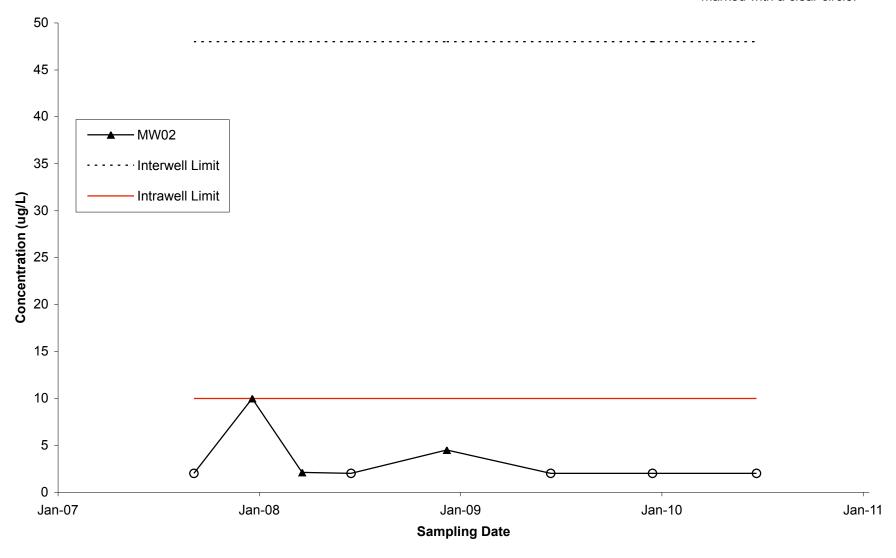


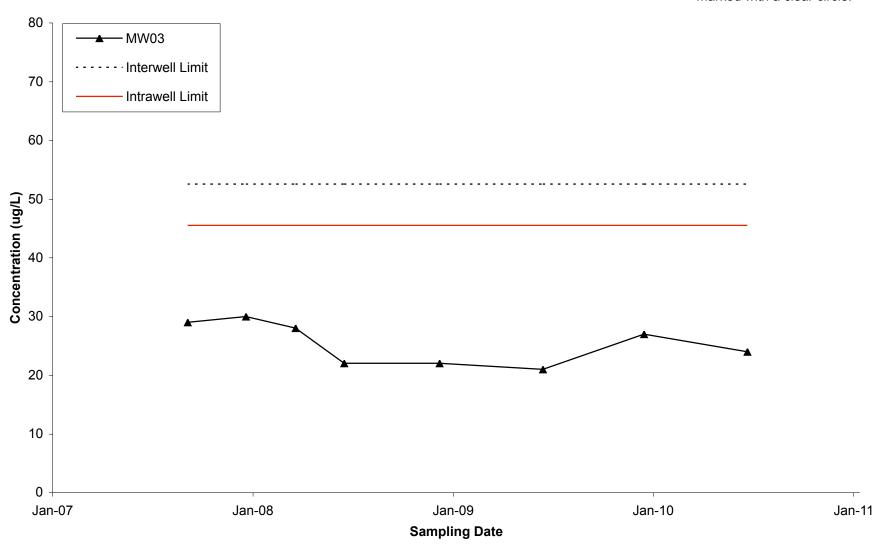


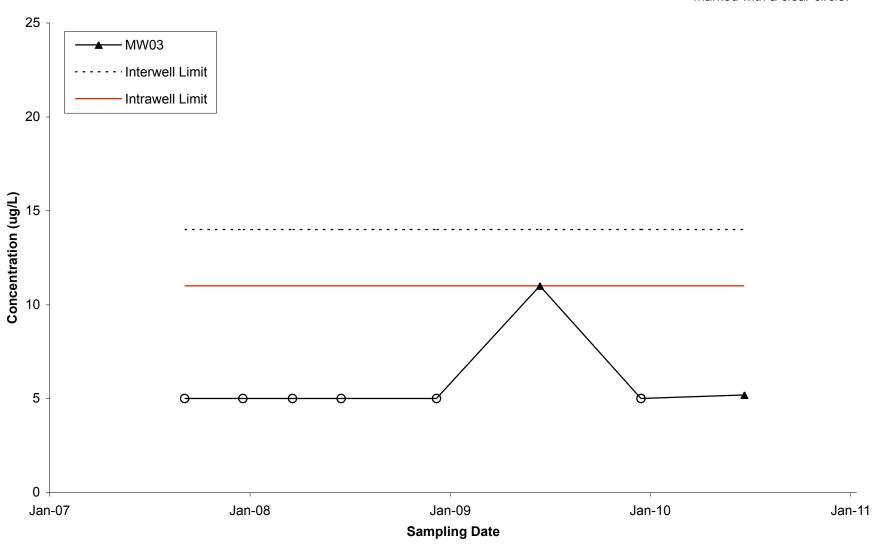


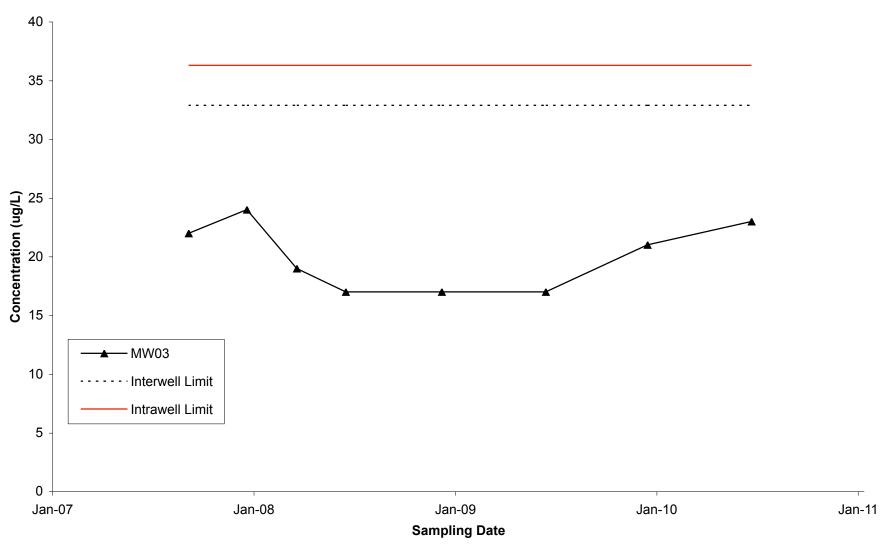


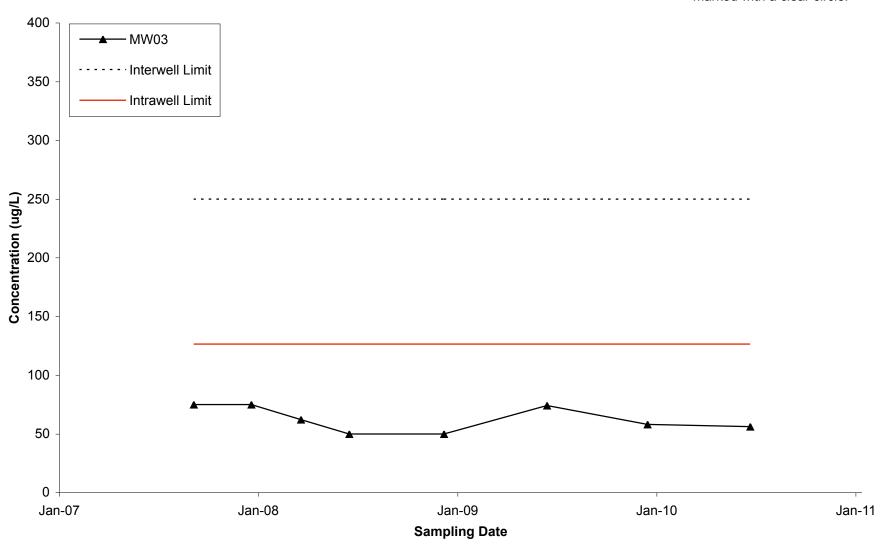


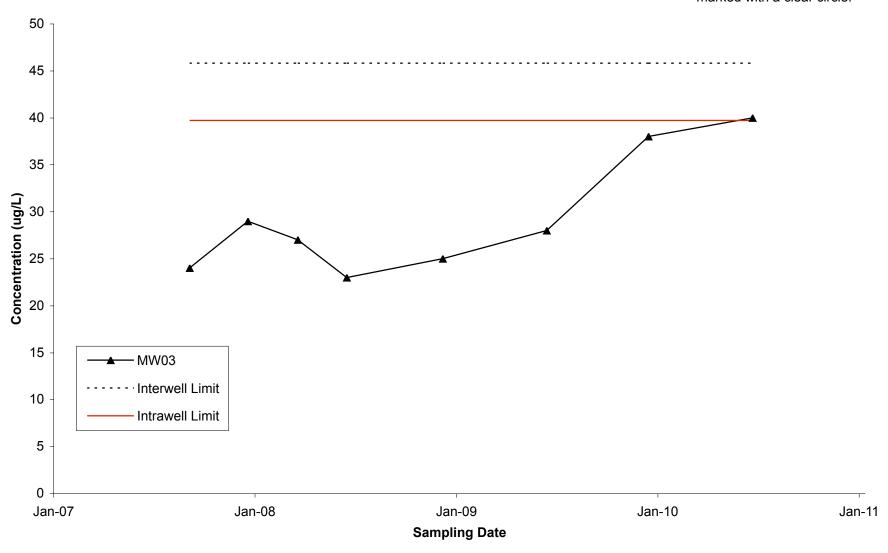


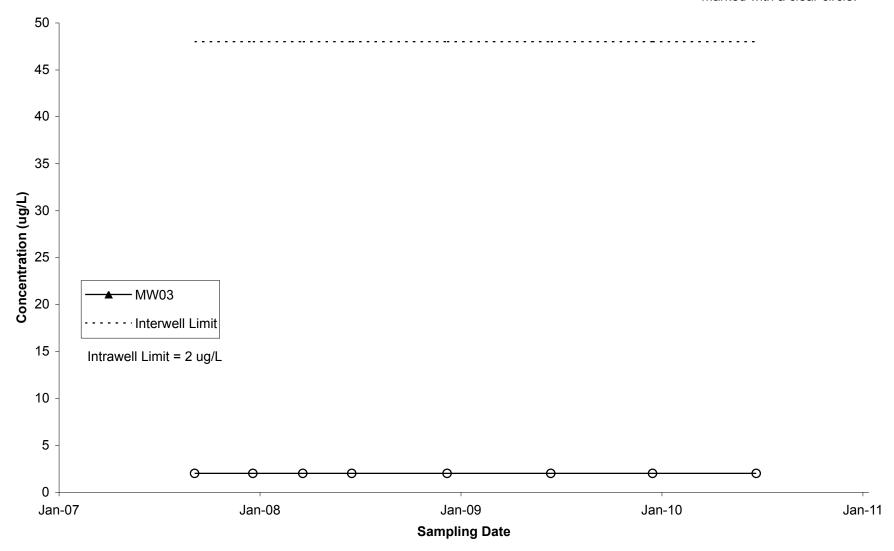


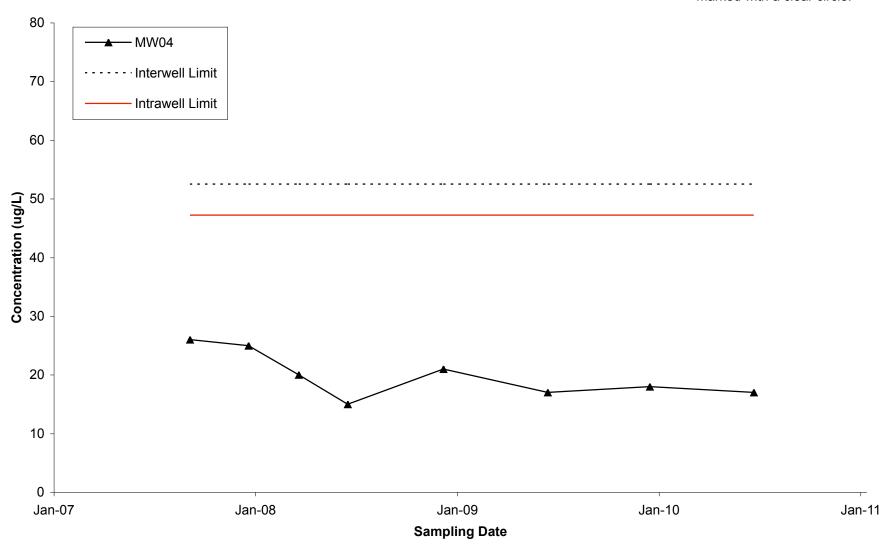


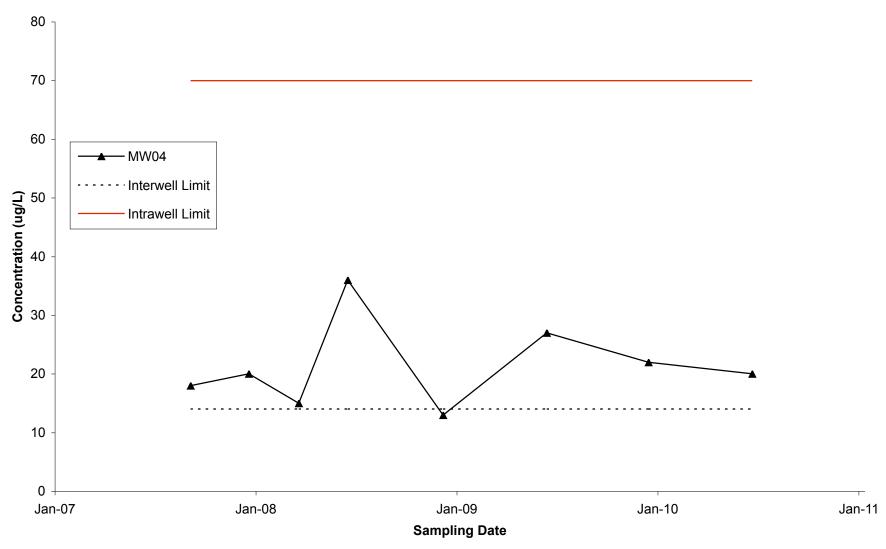


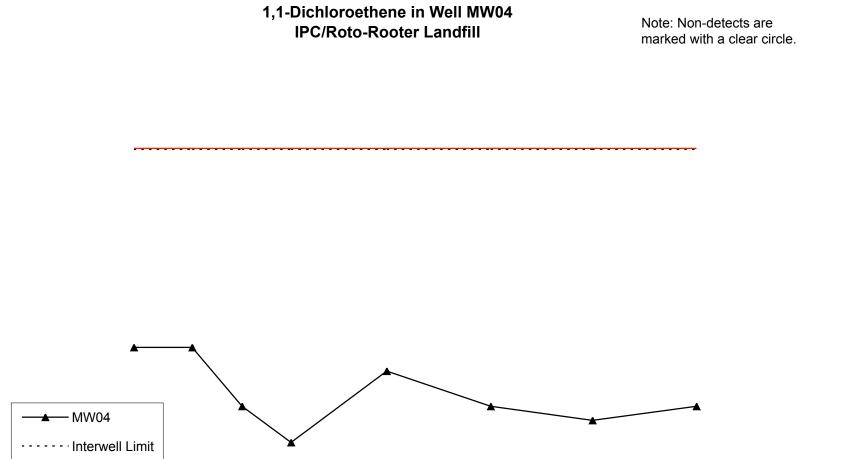












Jan-09

Sampling Date

Jan-10

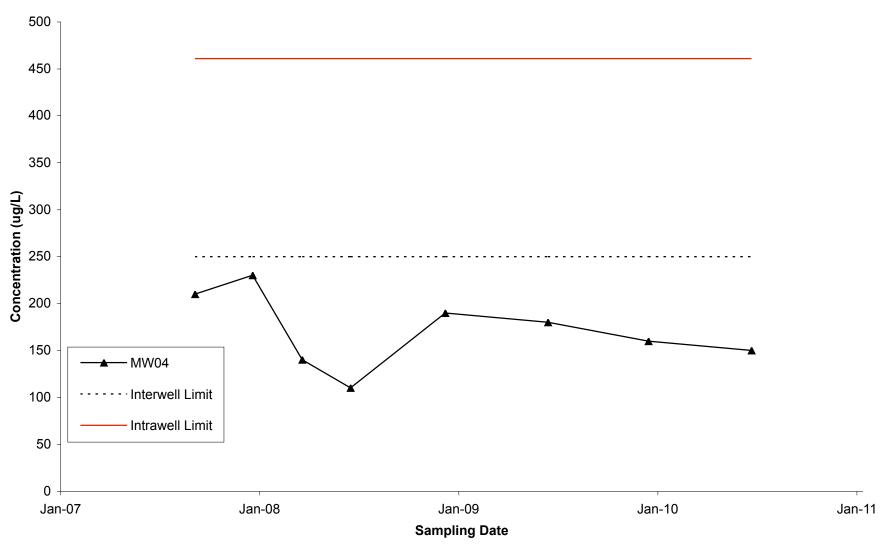
Jan-11

40

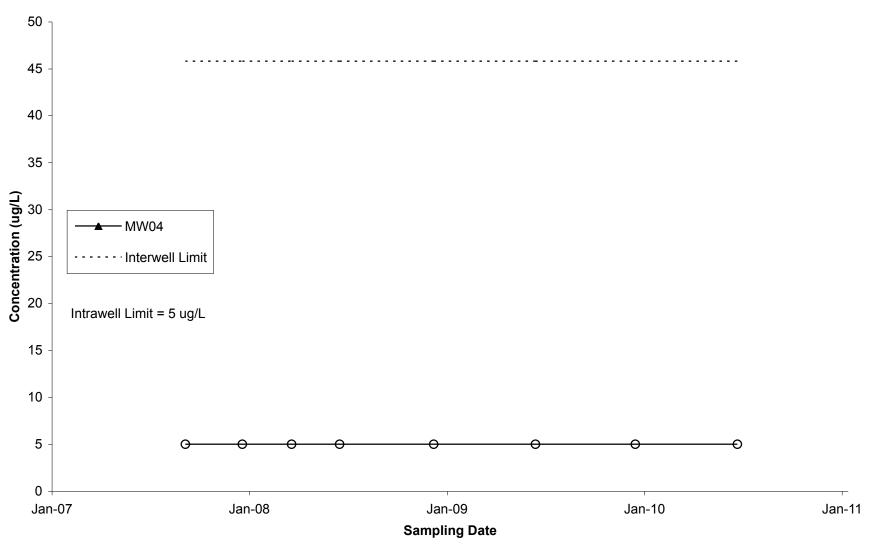
35

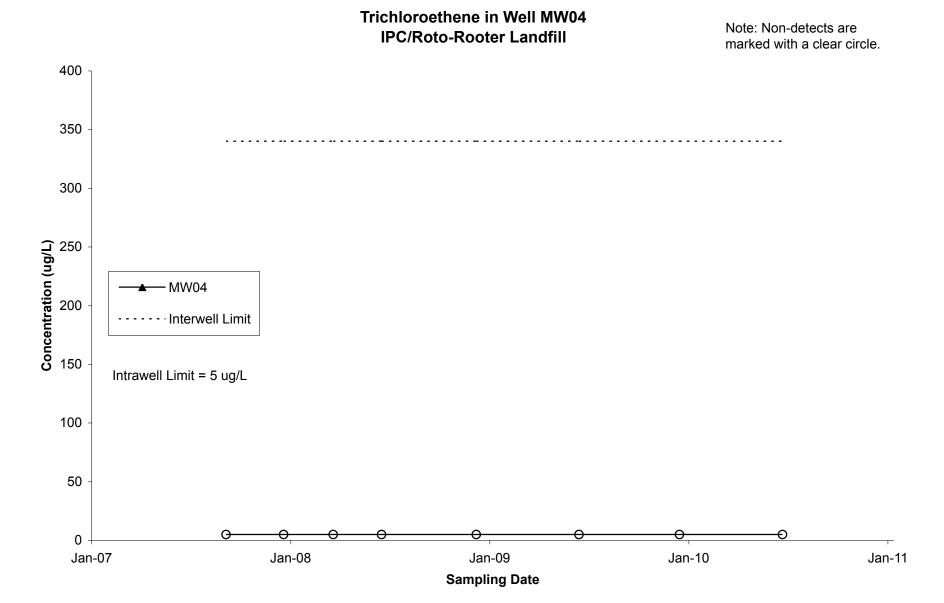
30

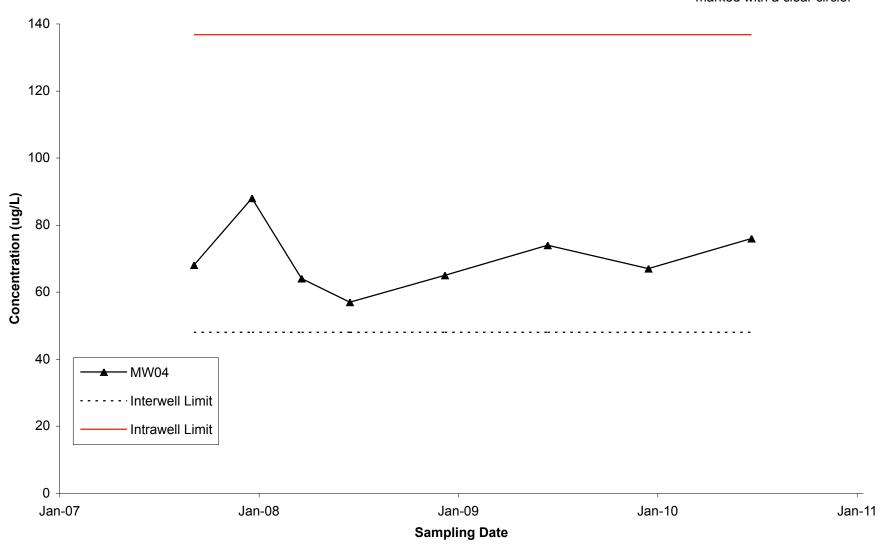
Concentration (ug/L) 25 15

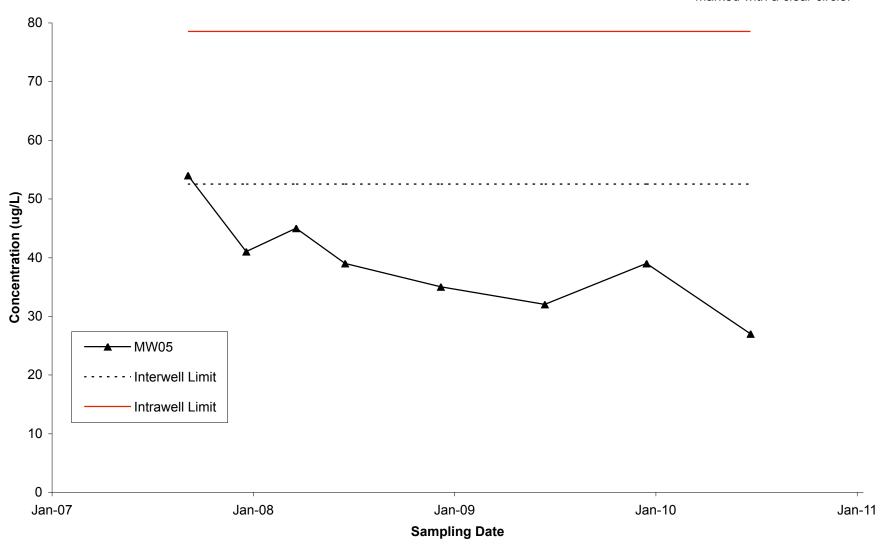

10

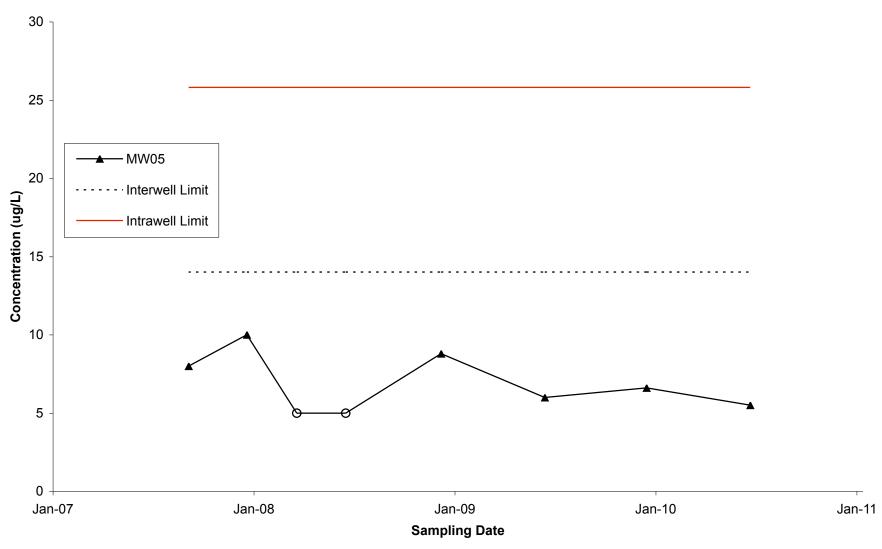
5

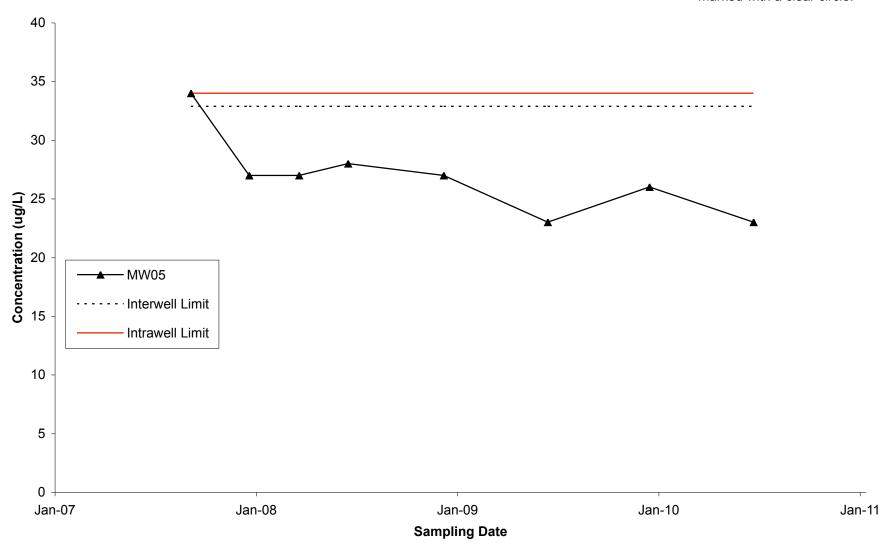

 Intrawell Limit

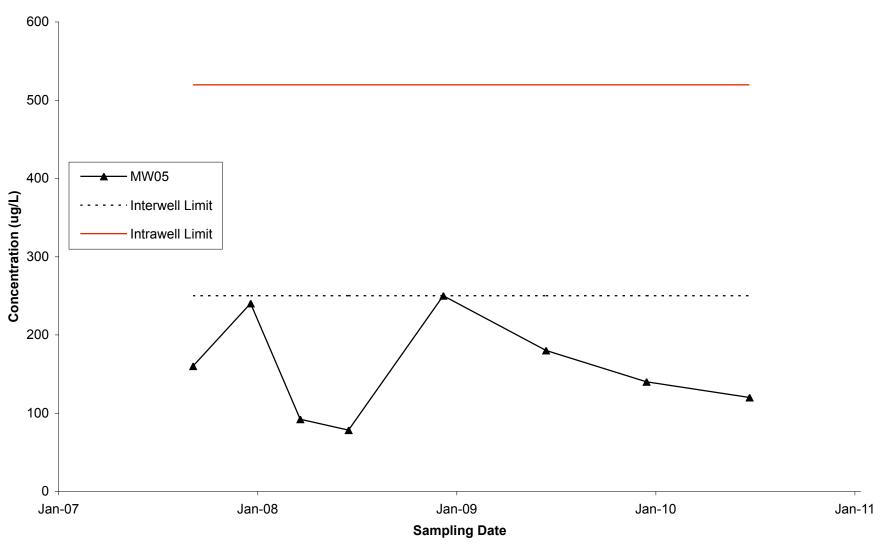

Jan-08

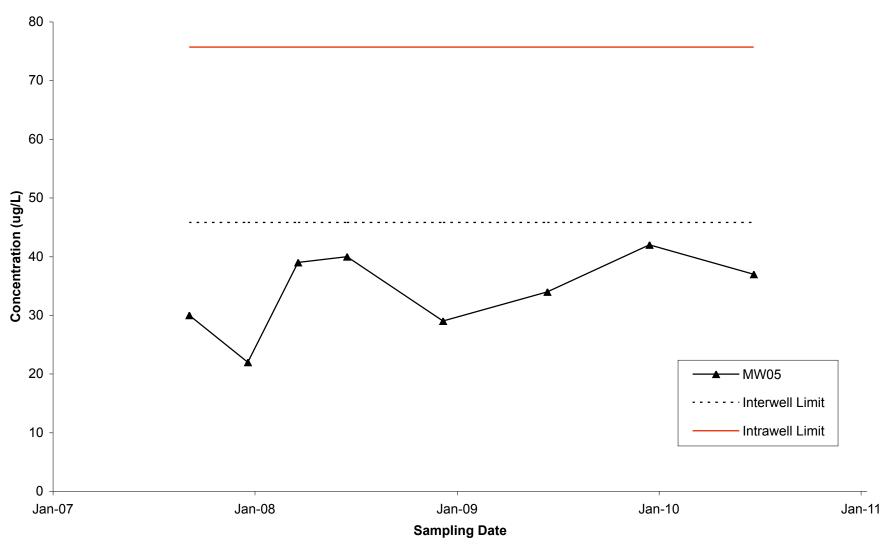


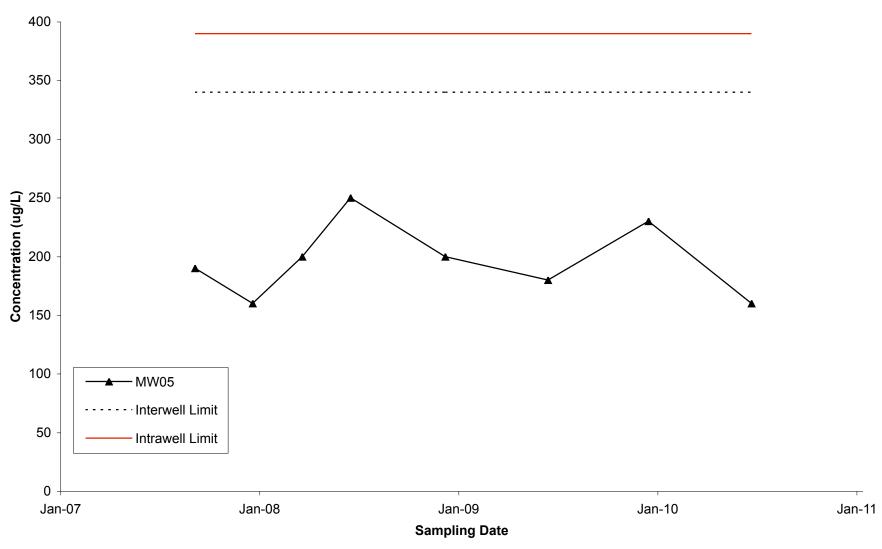


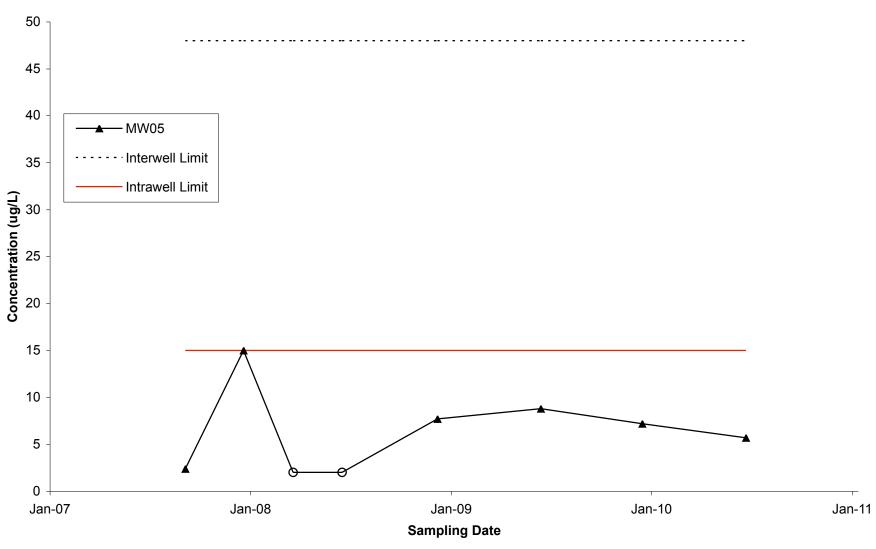


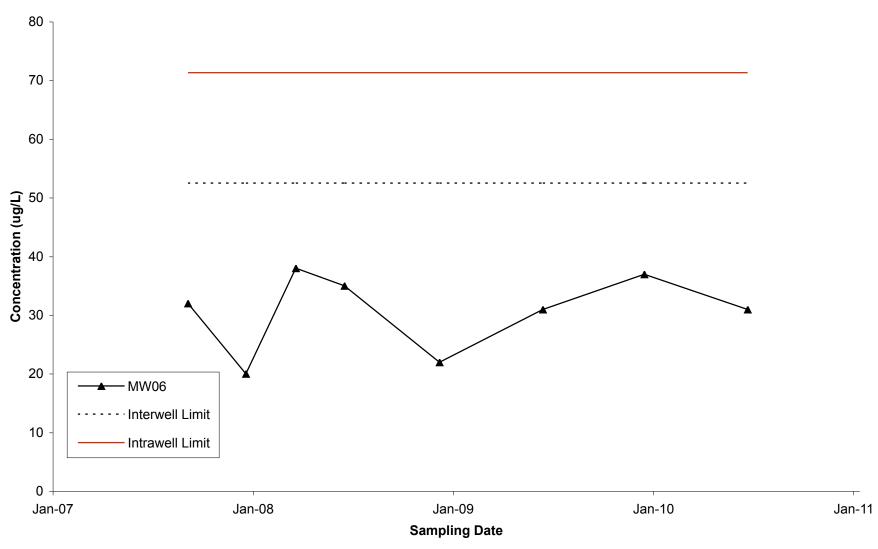


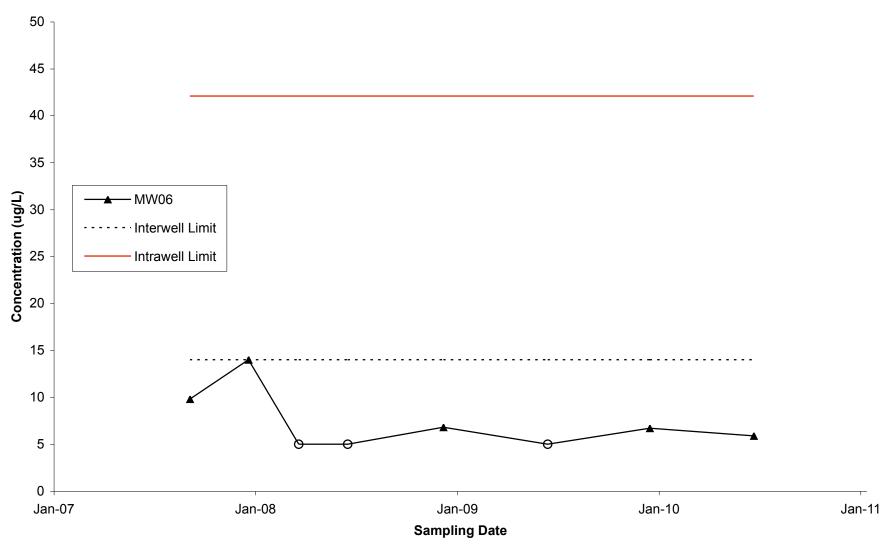


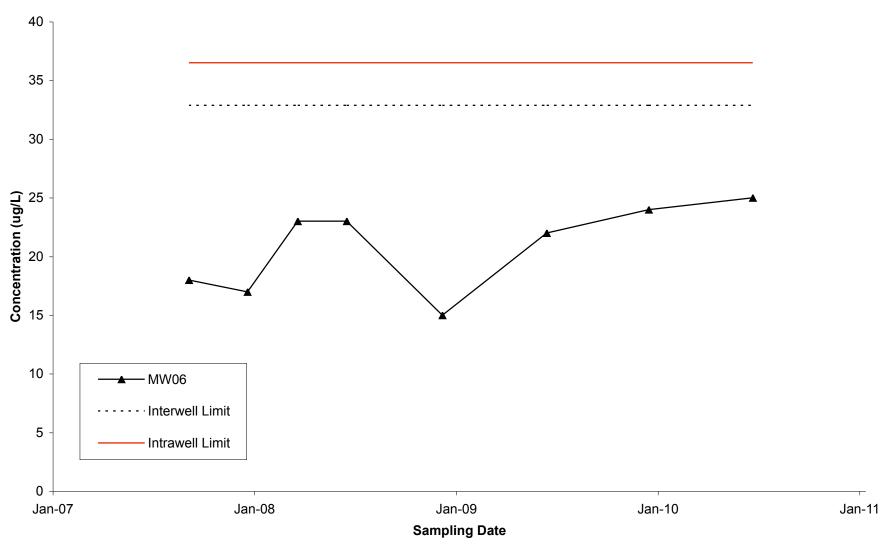


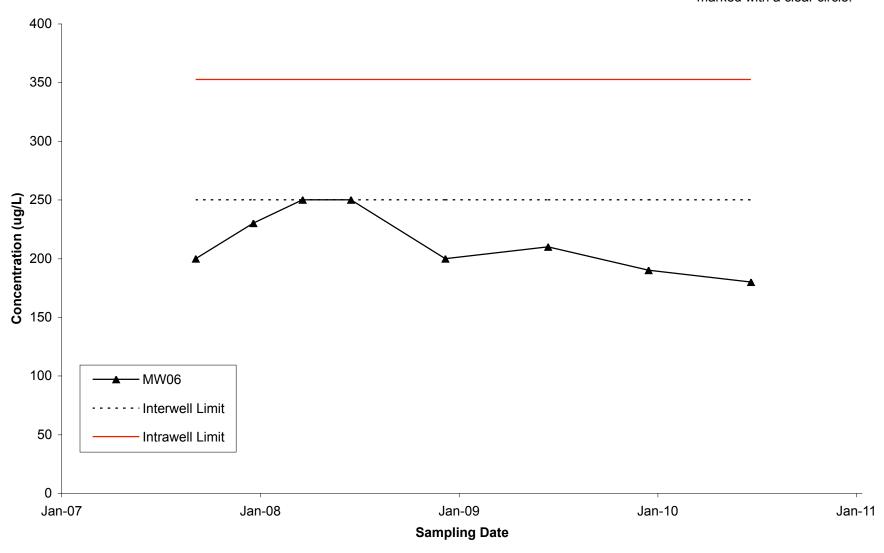


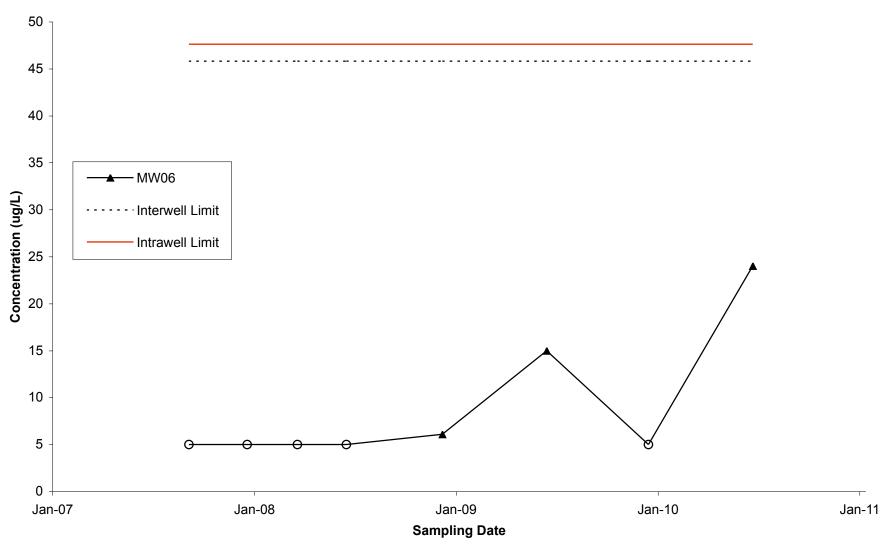


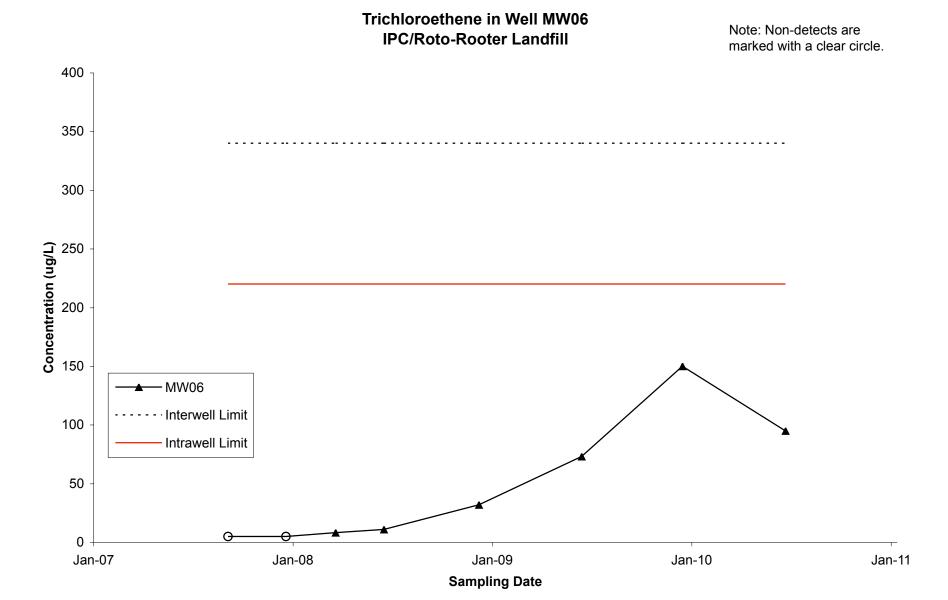


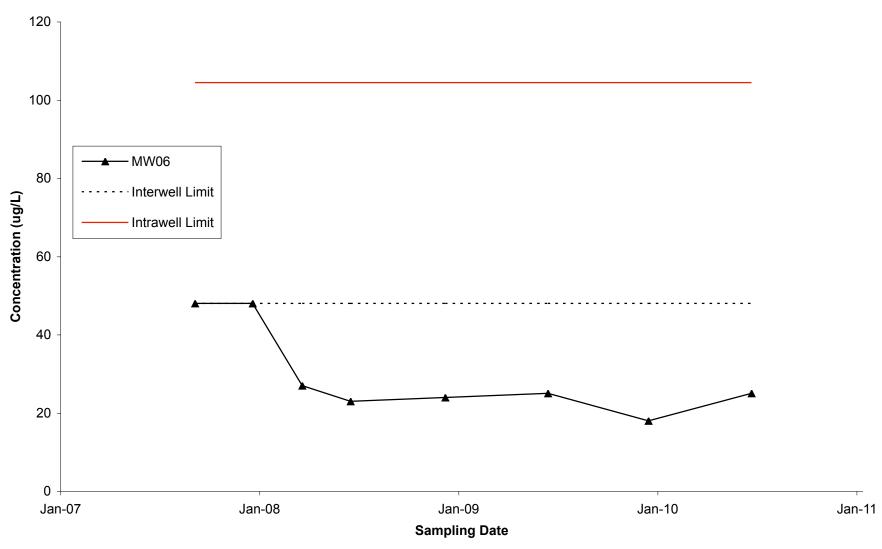


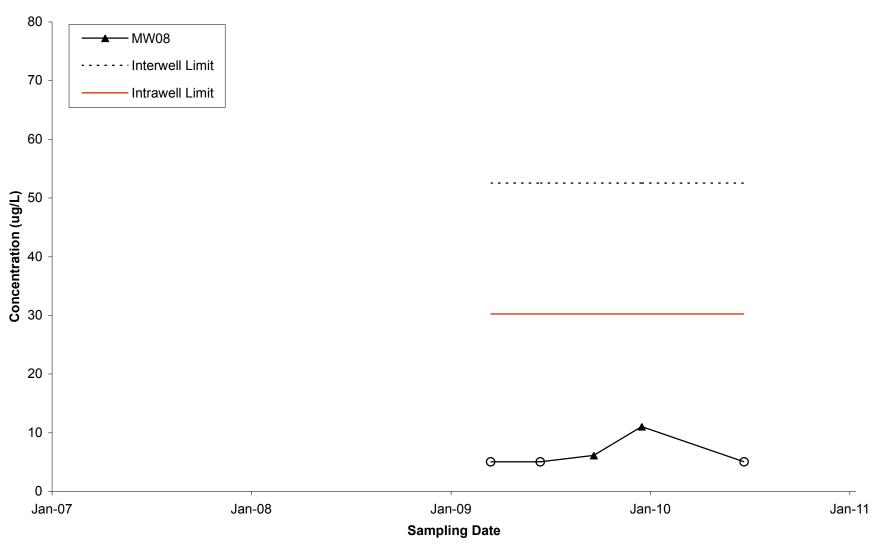


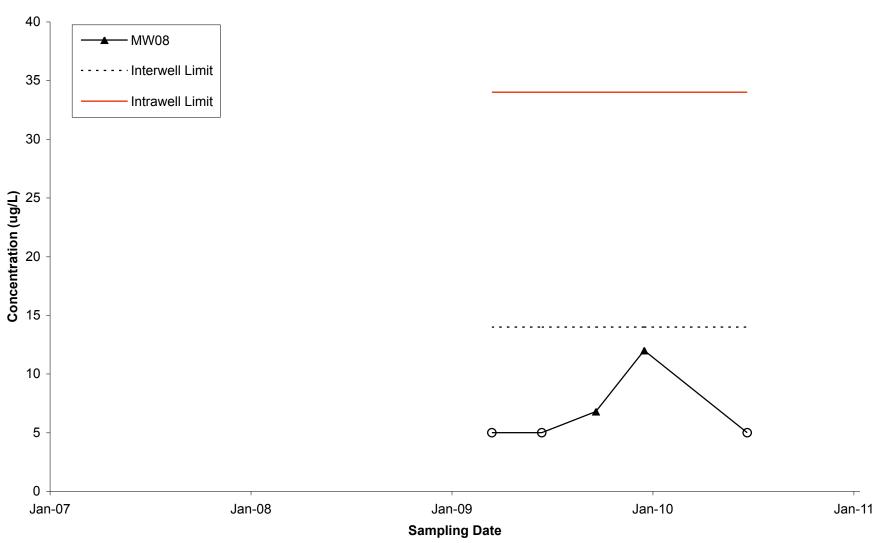


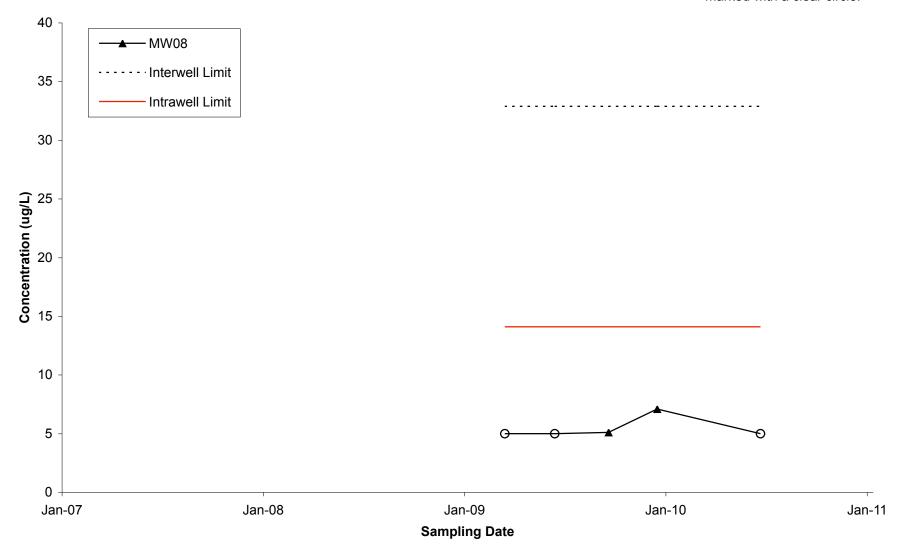


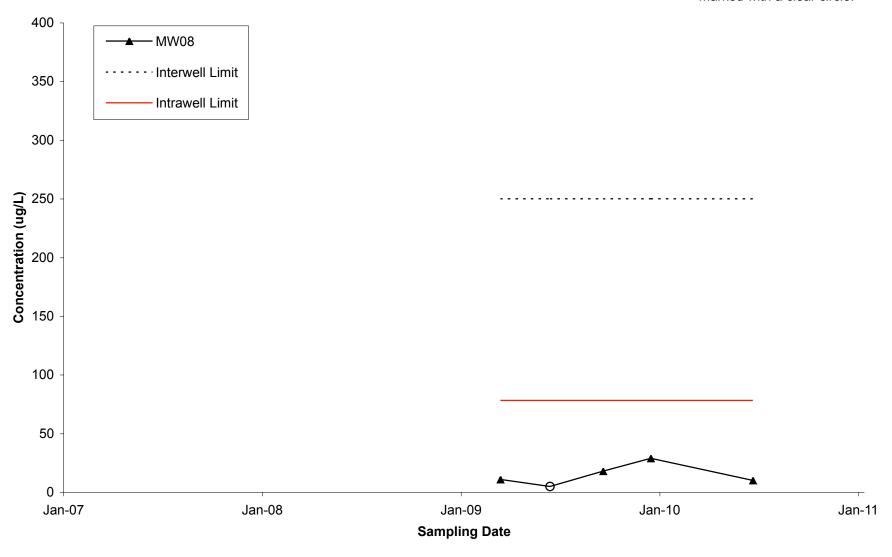


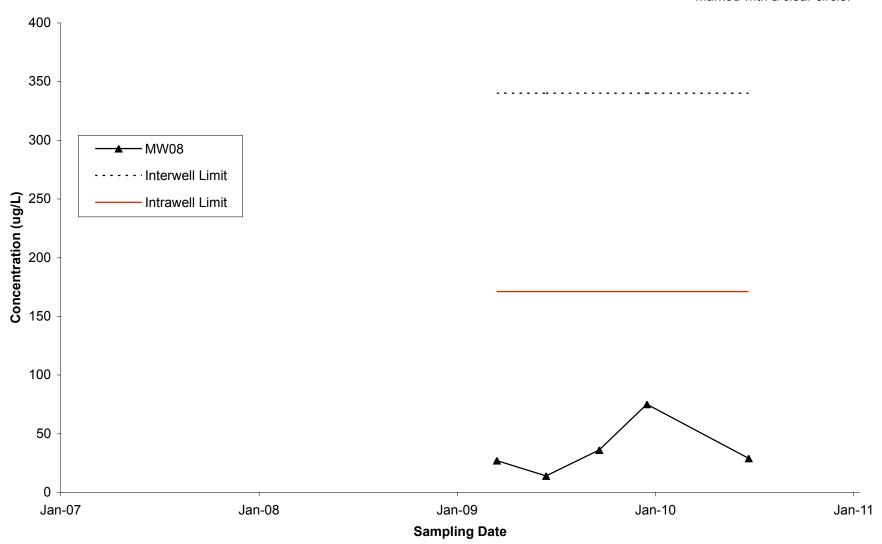


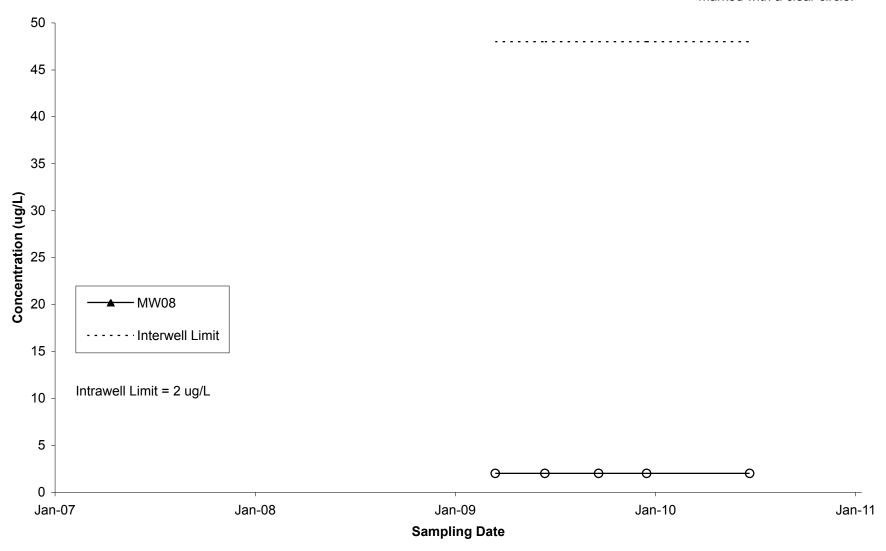


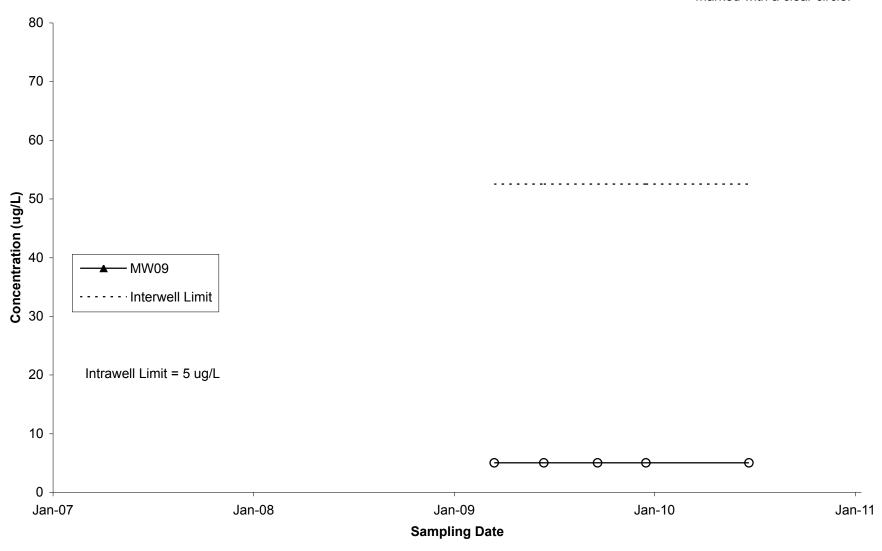


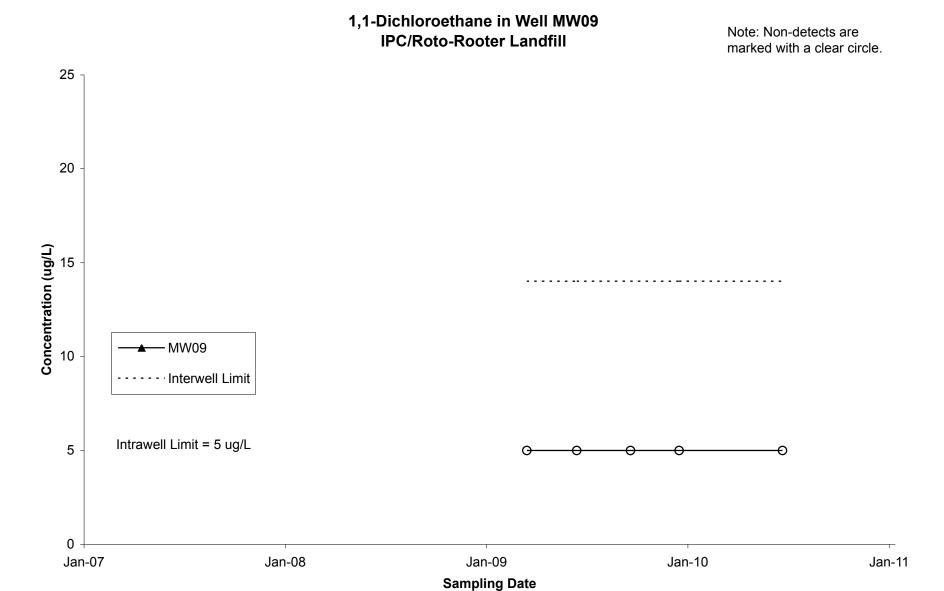


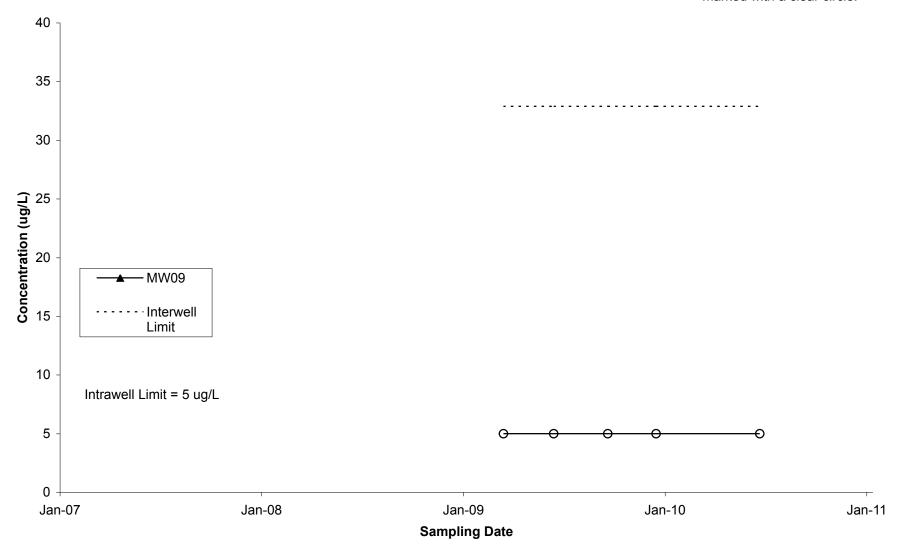




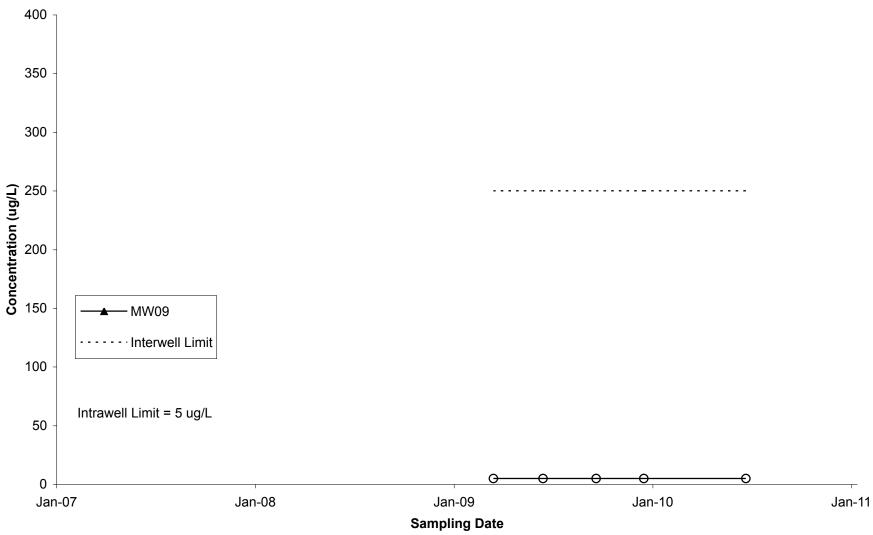


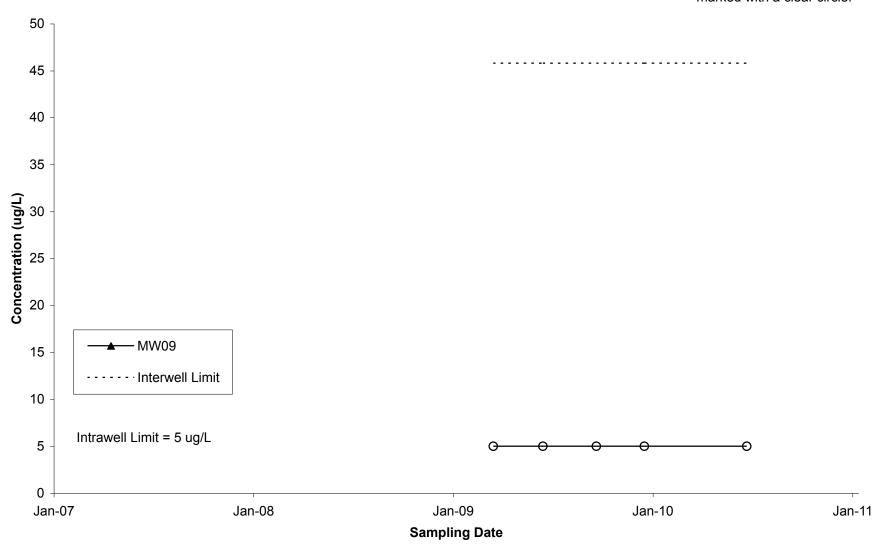


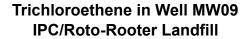


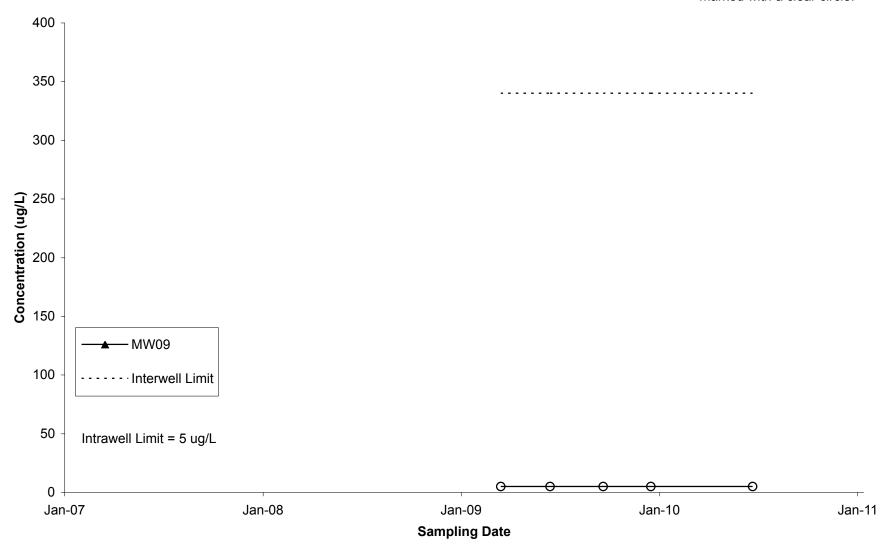


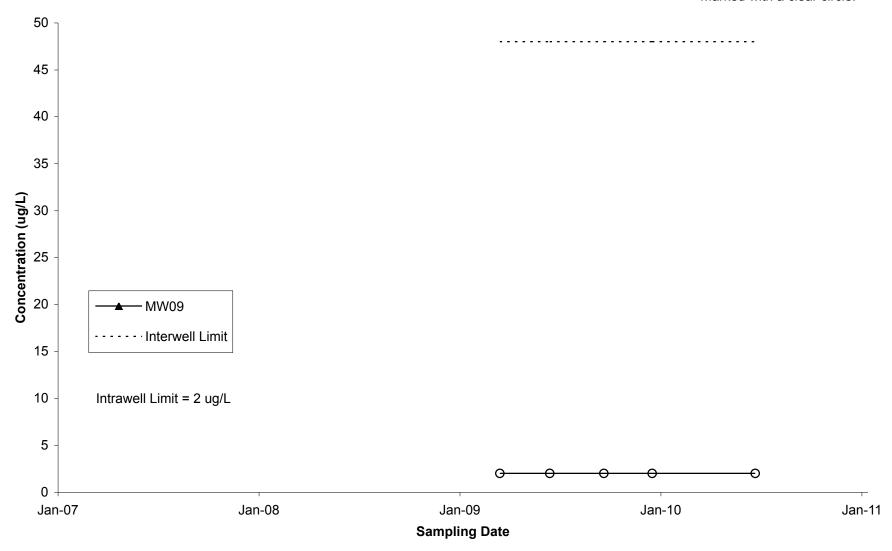












Data Validation Checklist

Date:	2/4/2010			
Validator Name:	Mary Pearson (EIL)			
Facility:	Interstate Pollution Control - Roto Rooter			
Facility Location:	Rockford, Illinois			
Event:	Dec-09			
Laboratory:	TestAmerica - Chicago			
Sampling Dates:	12/17/09 - 12/18/09			
Laboratory Job No:	500-23216-1 (Analysis Batch 500-78136 and 500-78	8199)		
Were the correct analytical methodologies used?		Yes	No	NA
Were all samples analyzed within the VOC hold time (14 days)?		Yes ■	No	NA
Were contaminants detected in the associated laboratory blank(s)?		Yes	No	NA
Were contaminants detected in the associated trip blank(s)? Trip blank froze and broke in transit; therefore, unable to analyze		Yes	No	NA •
Were contaminants detected in the associated field blank(s)?		Yes	No —	NA
Were surrogate recove	ries within the appropriate control ranges?	Yes ■	No	NA
Were laboratory control spikes within the appropriate control ranges?		Yes □	No	NA
MW5, MW6, MW8, and	PD outside control limit in analysis batch 500-78136 I Field Blank). LCS/LCSD RPD = 27%; Control Limit sected in any of the associated samples.	•	'2, MW3, M	' W4 ,
Carbon tetrachloride analysis batch 500-78	was recovered above the control limits in the laborate 199 (Well MW9).	tory control spike	e associate	ed with
Laboratory Control St Control Limits = 62%	• •			
Carbon tetrachloride	was not detected in monitoring well MW9.			
· ·	mples within 20% relative percent difference	Yes ■	No	NA

Duplicate Sample Evaluation December 2009 IPC Roto-Rooter Site

Parameter	Sample Date	Units	MW2	Qualifier	Duplicate	Qualifier	RPD
1,1,1-Trichloroethane	12/17/2009	ug/L	25		27		7.7%
1,1,2,2-Tetrachloroethane	12/17/2009	ug/L	5	U	5	U	0%
1,1,2-Trichloroethane	12/17/2009	ug/L	5	U	5	U	0%
1,1-Dichloroethane	12/17/2009	ug/L	5	U	5	U	0%
1,1-Dichloroethene	12/17/2009	ug/L	22		23		4.4%
1,2-Dichloroethane	12/17/2009	ug/L	5	U	5	U	0%
1,2-Dichloropropane	12/17/2009	ug/L	5	U	5	U	0%
2-Hexanone	12/17/2009	ug/L	20	U	20	U	0%
Acetone	12/17/2009	ug/L	20	U *	20	U *	0%
Benzene	12/17/2009	ug/L	5	U	5	U	0%
Bromodichloromethane	12/17/2009	ug/L	5	U	5	U	0%
Bromoform	12/17/2009	ug/L	5	U	5	U	0%
Bromomethane	12/17/2009	ug/L	5	U	5	U	0%
Carbon disulfide	12/17/2009	ug/L	5	U	5	U	0%
Carbon tetrachloride	12/17/2009	ug/L	5	U	5	U	0%
Chlorobenzene	12/17/2009	ug/L	5	U	5	U	0%
Chloroethane	12/17/2009	ug/L	5	U	5	U	0%
Chloroform	12/17/2009	ug/L	5	U	5	U	0%
Chloromethane	12/17/2009	ug/L	5	U	5	U	0%
cis-1,2-Dichloroethene	12/17/2009	ug/L	92		95		3.2%
cis-1,3-Dichloropropene	12/17/2009	ug/L	5	U	5	U	0%
Dibromochloromethane	12/17/2009	ug/L	5	U	5	U	0%
Ethylbenzene	12/17/2009	ug/L	5	U	5	U	0%
Methyl Ethyl Ketone	12/17/2009	ug/L	20	U	20	U	0%
methyl isobutyl ketone	12/17/2009	ug/L	20	U	20	U	0%
Methylene Chloride	12/17/2009	ug/L	10	U	10	U	0%
Styrene	12/17/2009	ug/L	5	U	5	U	0%
Tetrachloroethene	12/17/2009	ug/L	34		35		2.9%
Toluene	12/17/2009	ug/L	5	U	5	U	0%
trans-1,2-Dichloroethene	12/17/2009	ug/L	5	U	5	U	0%
trans-1,3-Dichloropropene	12/17/2009	ug/L	5	U	5	U	0%
Trichloroethene	12/17/2009	ug/L	210		200		4.9%
Vinyl chloride	12/17/2009	ug/L	2	U	2.1		4.9%
Xylenes, Total	12/17/2009	ug/L	5	U	5	U	0%

Blind field duplicate sample MW7 was collected from well MW2.

Qualifier U - Not Detected

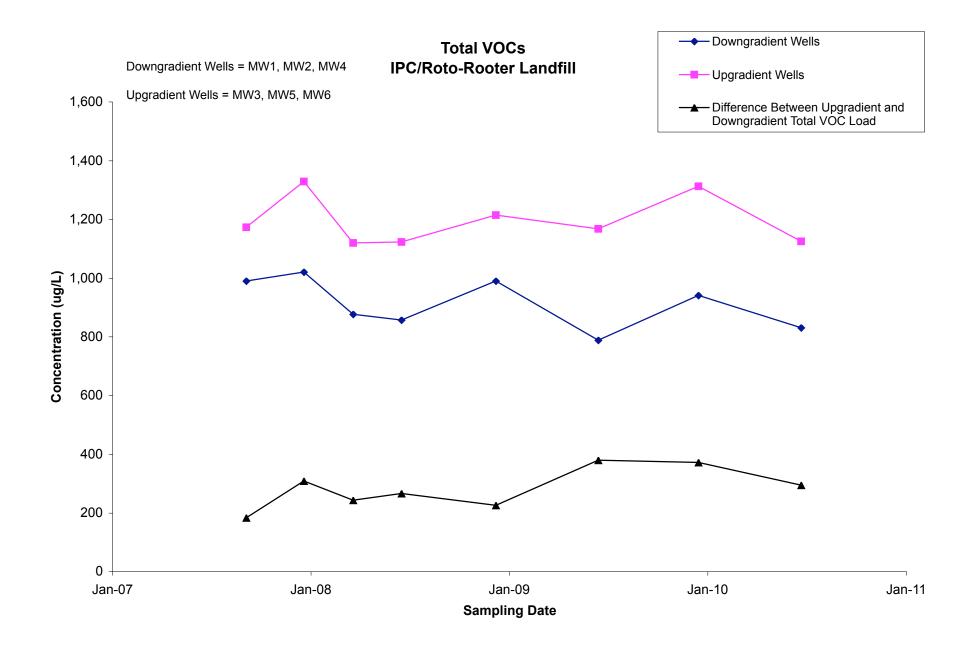
^{*} Laboratory Control Standards recovered above the acceptance limits.

Data Validation Checklist

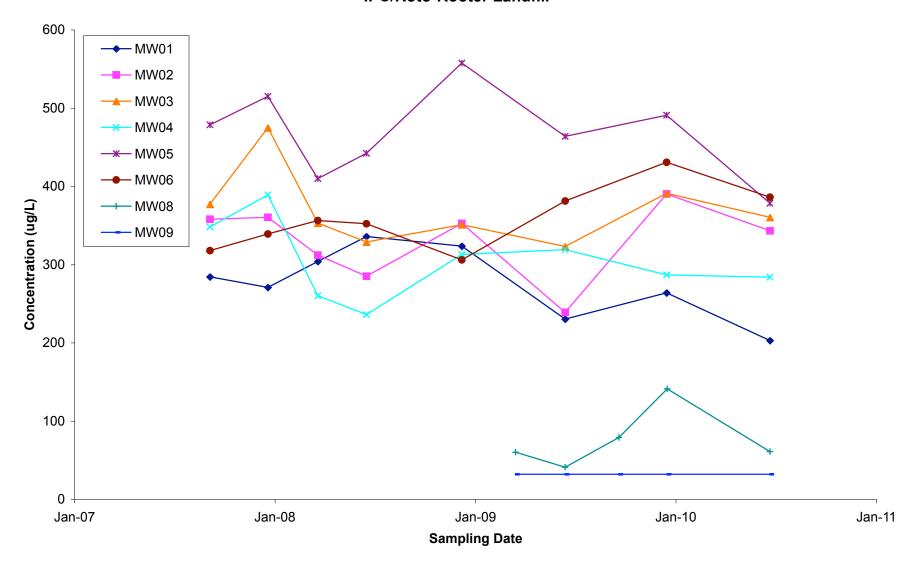
Date:	7/6/2010			
Validator Name:	Mary Pearson (EIL)			
Facility:	Interstate Pollution Control - Roto Rooter			
Facility Location:	Rockford, Illinois			
Event:	Jun-10			
Laboratory:	TestAmerica - Chicago			
Sampling Dates:	6/24/2010			
Laboratory Job No:	500-26320-1 (Analysis Batch 500-88631)			
Were the correct analy	tical methodologies used?	Yes	No	NA
Were all samples analyzed within the VOC hold time (14 days)?		Yes <u>■</u>	No 	NA
Were contaminants de	tected in the associated laboratory blank(s)?	Yes	No	NA
	tected in the associated trip blank(s)? nalyze the trip blank as it was not noted on COC	Yes	No	NA
•	tected in the associated field blank(s)?	Yes □	No	NA
Were surrogate recove	ries within the appropriate control ranges?	Yes	No	NA
Were laboratory contro	I spikes within the appropriate control ranges?	Yes ■	No	NA
•	mples within 20% relative percent difference for all tested analytes?	Yes ■	No	NA

Duplicate Sample Evaluation June 2010 IPC Roto-Rooter Site

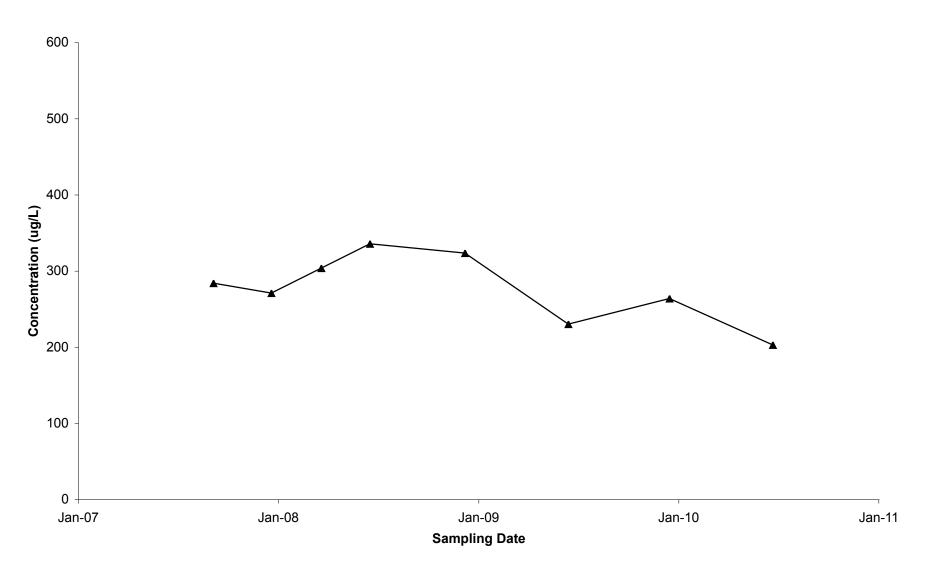
		**	MW1	0 116	D -11 - 4	0 116	777
Parameter	Sample Date	Units		Qualifier	Duplicate	Qualifier	RPD
1,1,1-Trichloroethane	6/24/2010	ug/L	5	U	5		0%
1,1,2,2-Tetrachloroethane	6/24/2010	ug/L	5	U	5	U	0%
1,1,2-Trichloroethane	6/24/2010	ug/L	5	U	5	U	0%
1,1-Dichloroethane	6/24/2010	ug/L	16		16		0%
1,1-Dichloroethene	6/24/2010	ug/L	11		11		0%
1,2-Dichloroethane	6/24/2010	ug/L	5	U	5	U	0%
1,2-Dichloropropane	6/24/2010	ug/L	5	U	5	U	0%
2-Hexanone	6/24/2010	ug/L	20	U	20	U	0%
Acetone	6/24/2010	ug/L	20	U	20	U	0%
Benzene	6/24/2010	ug/L	5	U	5	U	0%
Bromodichloromethane	6/24/2010	ug/L	5	U	5	U	0%
Bromoform	6/24/2010	ug/L	5	U	5	U	0%
Bromomethane	6/24/2010	ug/L	5	U	5	U	0%
Carbon disulfide	6/24/2010	ug/L	5	U	5	U	0%
Carbon tetrachloride	6/24/2010	ug/L	5	U	5	U	0%
Chlorobenzene	6/24/2010	ug/L	5	U	5	U	0%
Chloroethane	6/24/2010	ug/L	5	U	5	U	0%
Chloroform	6/24/2010	ug/L	5	U	5	U	0%
Chloromethane	6/24/2010	ug/L	5	U	5	U	0%
cis-1,2-Dichloroethene	6/24/2010	ug/L	130		150		14.3%
cis-1,3-Dichloropropene	6/24/2010	ug/L	5	U	5	U	0%
Dibromochloromethane	6/24/2010	ug/L	5	U	5	U	0%
Ethylbenzene	6/24/2010	ug/L	5	U	5	U	0%
Methyl Ethyl Ketone	6/24/2010	ug/L	20	U	20	U	0%
methyl isobutyl ketone	6/24/2010	ug/L	20	U	20	U	0%
Methylene Chloride	6/24/2010	ug/L	10	U	10	U	0%
Styrene	6/24/2010	ug/L	5	U	5	U	0%
Tetrachloroethene	6/24/2010	ug/L	5	U	5	U	0%
Toluene	6/24/2010	ug/L	5	U	5	U	0%
trans-1,2-Dichloroethene	6/24/2010	ug/L	5	U	5	U	0%
trans-1,3-Dichloropropene	6/24/2010	ug/L	5	U	5	U	0%
Trichloroethene	6/24/2010	ug/L	20		19		5.1%
Vinyl chloride	6/24/2010	ug/L	16		16		0%
Xylenes, Total	6/24/2010	ug/L	5	U	5	U	0%

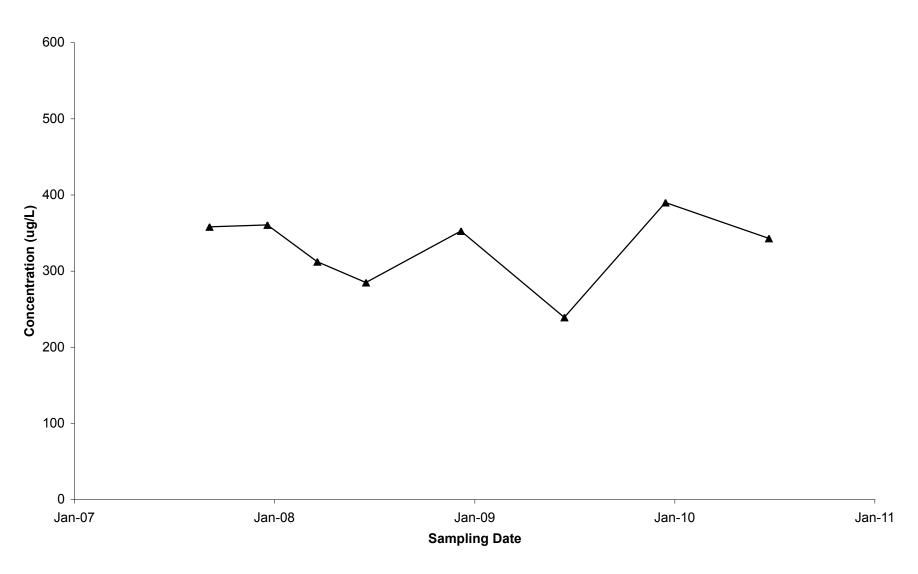

Blind field duplicate sample MW7 was collected from well MW1.

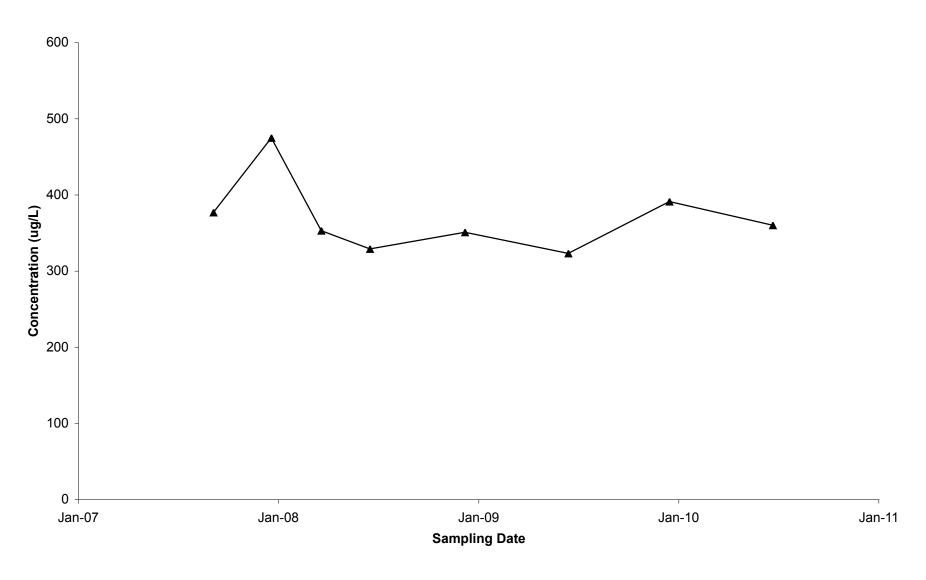
Qualifier U - Not Detected

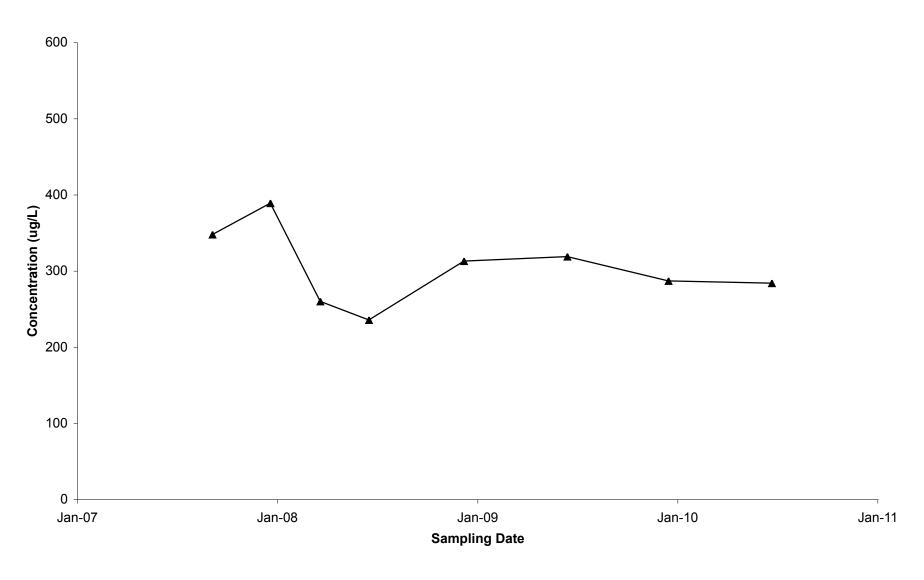

Data Validation Checklist

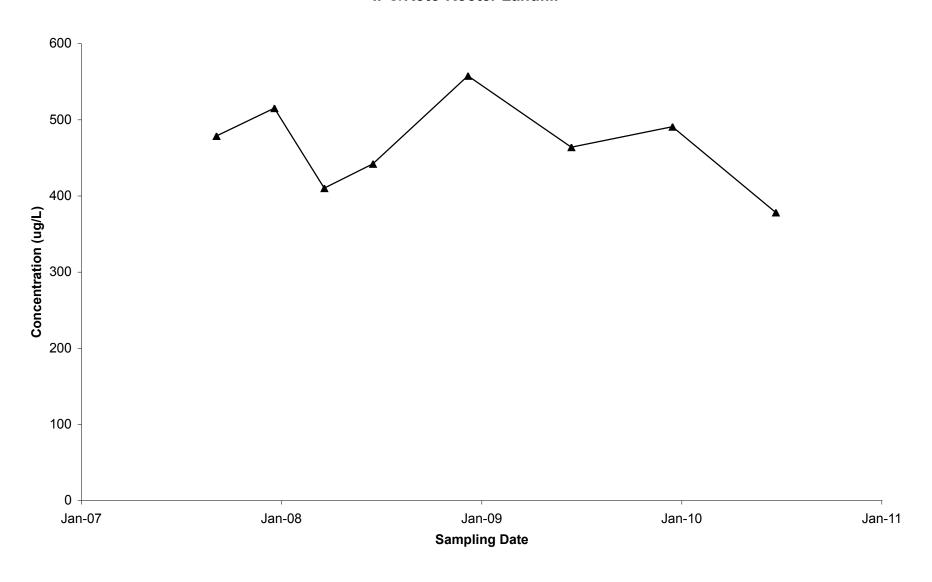
Date:	7/23/2010			
Validator Name:	Mary Pearson (EIL)			
Facility:	Interstate Pollution Control - Roto Rooter			
Facility Location:	Rockford, Illinois			
Event:	June 2010 Resample			
Laboratory:	TestAmerica - Chicago			
Sampling Dates:	7/9/2010			
Laboratory Job No:	500-26593-1 (Analysis Batch 500-89591)			
Were the correct analytical methodologies used?		Yes ■	No	NA
Were all samples analyzed within the VOC hold time (14 days)?		Yes ■	No 	NA
Were contaminants def	rected in the associated laboratory blank(s)?	Yes □	No	NA
Were contaminants det A trip blank was not o	Yes	No	NA	
Were contaminants detected in the associated field blank(s)? A field blank was not collected for this re-sample event.		Yes	No	NA
Were surrogate recove	ries within the appropriate control ranges?	Yes	No	NA
Were laboratory contro	I spikes within the appropriate control ranges?	Yes ■	No	NA
of the primary samples A field duplicate was	mples within 20% relative percent difference for all tested analytes? not collected for this re-sample event. d at well MW1 for this resample was acceptable.	Yes	No	NA ■

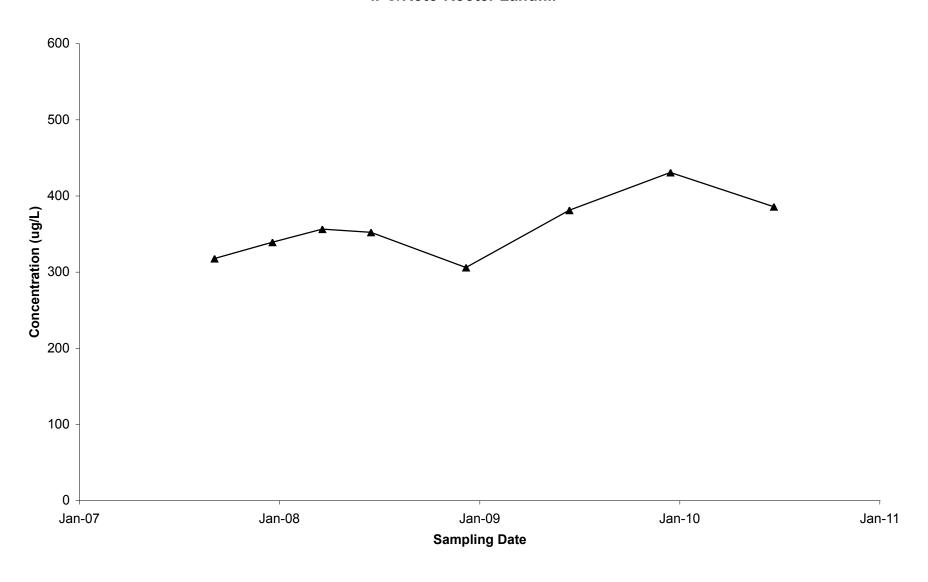

Page 1 of 1

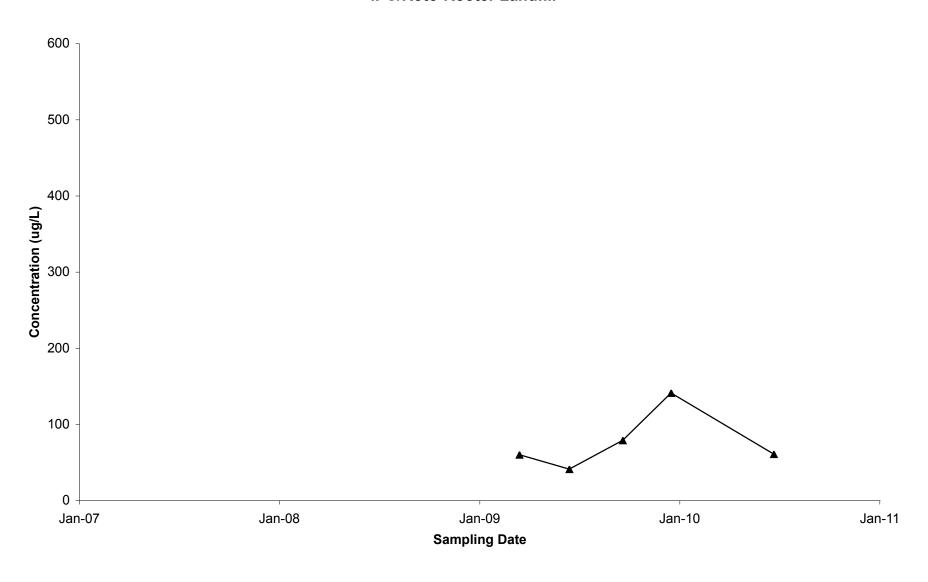

Total VOCs in Select Wells IPC/Roto-Rooter Landfill

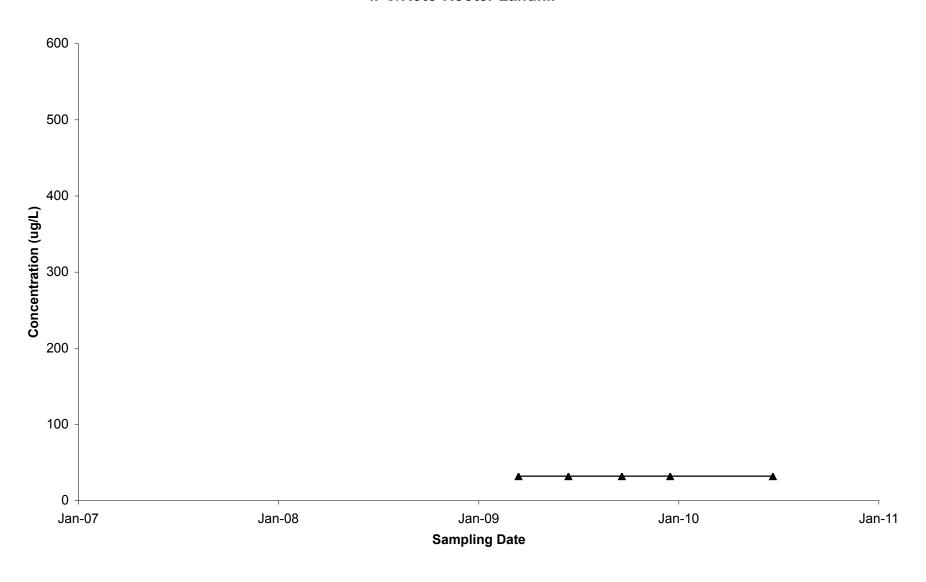

Total VOCs in Well MW01 IPC/Roto-Rooter Landfill

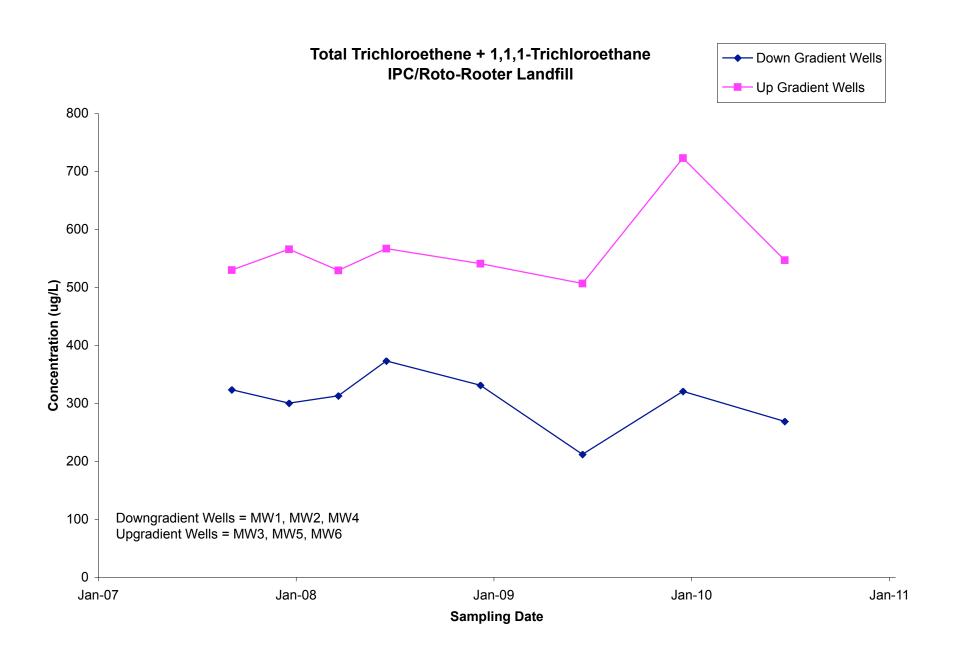

Total VOCs in Well MW02 IPC/Roto-Rooter Landfill

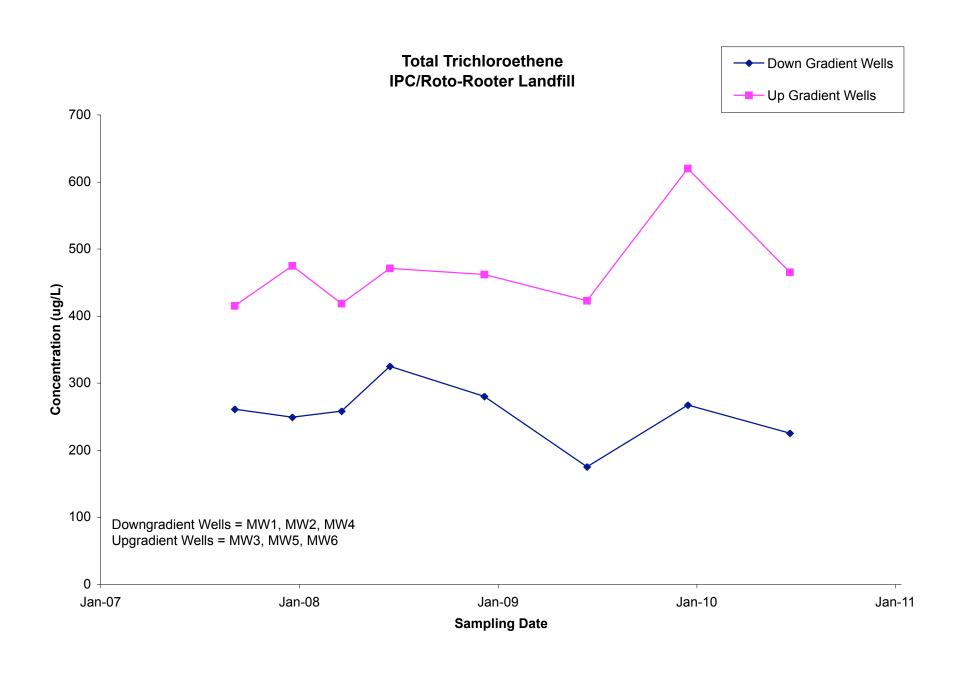

Total VOCs in Well MW03 IPC/Roto-Rooter Landfill

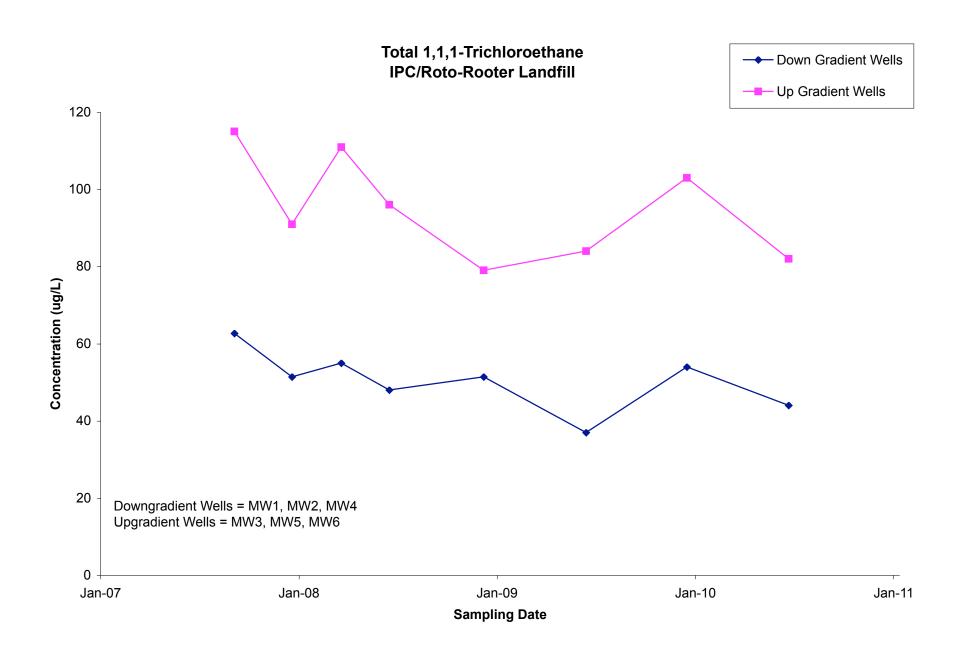

Total VOCs in Well MW04 IPC/Roto-Rooter Landfill


Total VOCs in Well MW05 IPC/Roto-Rooter Landfill


Total VOCs in Well MW06 IPC/Roto-Rooter Landfill




Total VOCs in Well MW08 IPC/Roto-Rooter Landfill



Total VOCs in Well MW09 IPC/Roto-Rooter Landfill

